[1] Volkin, D.B. and Klibanov, A.M. (1989) Minimizing protein inactivation, in T.E. Creighton Ed., Protein Function: Practical Approach, 1-24, IRL Press, Oxford.
[2] Klibanov, A.M. (1983) Stabilization of enzymes against thermal inactivation. Advances in Applied Microbiology, 29, 1-28. doi:10.1016/S0065-2164(08)70352-6
[3] Illanes, A. (1999) Stability of biocatalysts. Electronic Journal of Biotechnology, 2, 1-9.
[4] Gerlsma, S.Y. (1968) Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. Journal of Biological Chemistry, 243, 957-961.
[5] Kaushik, J.K. and Bhat, R. (1998) Thermal stability of proteins in aqueous polyol solutions: Role of the surface tension of water in the stabilizing effect of polyols. Journal of Biological Chemistry. B, 102, 7058-7066.
[6] Back, J.F., Oakenfull, D. and Smith, M.B. (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18, 5191-5196. doi:10.1021/bi00590a025
[7] Lee, J.C. and Timasheff, S.N. (1981) The stabilization of proteins by sucrose. Journal of Biological Chemistry, 256, 7193-7201.
[8] Santoro, M.M., Liu, Y., Khan, S.M.A., Hou, L.-X. and Bolen, D.W. (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31, 5278-5283. doi:10.1021/bi00138a006
[9] Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. (1982) Living with water stress: evolution of osmolyte systems. Science, 217, 1214-1222. doi:10.1126/science.7112124
[10] Arakawa, T., Bhat, R. and Timasheff, S.N. (1990) Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry, 29, 1924- 1931. doi:10.1021/bi00459a037
[11] Ikegaya, K. (2005) Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase. Journal of Biochemistry, 137, 349. doi:10.1093/jb/mvi037
[12] Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and calalysis. Chemical Reviews, 99, 2071-2083. doi:10.1021/cr980032t
[13] Greaves, T.L. and Drummond, C.J. (2008) Protic ionic liquids: Properties and applications. Chemical Reviews, 108, 206-237. doi:10.1021/cr068040u
[14] Moniruzzaman, M., Nakashima, K., Kamiya, N. and Goto, M. (2010) Recent advances of enzymatic reactions in ionic liquids. Biochemical Engineering Journal, 48, 295-314. doi:10.1016/j.bej.2009.10.002
[15] Yang, Z. and Pan, W. (2005) Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme and Microbial Technology, 37, 19-28. doi:10.1016/j.enzmictec.2005.02.014
[16] Jollès, P. (Ed.), (1996) Lysozymes: Model Enzymes in Biochemistry and Biology. Birkh?user Verlag, Basel.
[17] Ahern, T.J. and Klibanov, A.M. (1985) The mechanism of irreversible enzyme inactivation at 100℃. Science, 228, 1280-1284. doi:10.1126/science.4001942
[18] Nohara, D., Mizutani, A. and Sakai, T. (1999) Kinetic study on thermal denaturation of hen egg-white lysozyme involving precipitation. Journal of Bioscience and Bioengineering, 87, 199-205. doi:10.1016/S1389-1723(99)89013-6
[19] Lumry, R. and Eyring, H. (1954) Conformation changes of proteins. J. Physical Chemistry, 58, 110-120. doi:10.1021/j150512a005
[20] Zale, S.E. and Klibanov, A.M. (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnology & Bioengineering, 25, 2221-2230. doi:10.1002/bit.260250908
[21] Cioci, F. and Lavecchia, R. (1998) Thermostabilization of proteins by water-miscible additives. Chemical and Biochemical Engineering Quarterly, 12, 191-199.
[22] Noritomi, H., Nishida, S. and Kato, S. (2007) Protease-catalyzed esterification of amino acid in water-miscible ionic liquid. Biotechnology Letters, 29, 1509-1512. doi:10.1007/s10529-007-9416-4
[23] Noritomi, H., Suzuki, K., Kikuta, M. and Kato, S. (2009) Catalytic activity of α-chymotrypsin in enzymatic peptide synthesis in ionic liquids. Biochemical Engineering Journal, 47, 27-30. doi:10.1016/j.bej.2009.06.010
[24] Summers, C.A. and Fowers II, R.A. (2000) Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Science, 9, 2001-2008. doi:10.1110/ps.9.10.2001
[25] Mann, J.P., McCluskey, A. and Atkin, R. (2009) Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—Influence of cation modification. Green Chemistry, 11, 785-792. doi:10.1039/b900021f
[26] Ibara-Molero, B. and Sanchez-Ruiz, J.M. (1997) Are there equilibrium intermediate states in the urea-induced unfolding of hen egg-white lysozyme? Biochemistry, 36, 9616-9624. doi:10.1021/bi9703305
[27] Griko, Y.V., Freire, E., Privalov, G., Dael, H.V. and Privalov, P.L. (1995) The unfolding thermodynamics of c-type lysozyme—A calorimetric study of the heat denaturation of equine lysozyme. Journal of Molecular Biology, 252, 447-459. doi:10.1006/jmbi.1995.0510
[28] Privalov, P.L. and Khechinashvili, N.N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure. Journal of Molecular Biology, 86, 665-684. doi:10.1016/0022-2836(74)90188-0
[29] Khechinashvili, N.N., Privalov, P.L. and Tiktopulo, E.I. (1973) Calorimetric investigation of lysozyme thermal denaturation. FEBS Letter, 30, 57-60. doi:10.1016/0014-5793(73)80618-0
[30] Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science, 181, 223-230. doi:10.1126/science.181.4096.223
[31] Rudolph, R. and Lilie, H. (1996) In vitro folding of inclusion body proteins. FASEB Journal, 10, 49-56.
[32] Byrne, N. and Angell, C.A. (2009) Formation and dissolution of hen egg white lysozyme amyloid fibrils in protic liquids. Chemistry Communications, 1046-1048. doi:10.1039/b817590j
[33] Lange, C., Patil, G. and Rudolph, R. (2005) Ionic liquids as refolding additives:N’-alkyl and N’-(ω-hydroxyalkyl) N-methylimidazolium chlorides. Protein Science, 14, 2693-2701. doi:10.1110/ps.051596605
[34] Zhao, H. (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. Journal of Molecular Catalysis, B: Enzymatic, 37, 16-25. doi:10.1016/j.molcatb.2005.08.007
[35] Von Hippel, P.H. and Schleich, T. (1969) The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff, S.N. and Fasman, G.D., Eds., Structure and Stability of Biological Macromolecules, Marcel-Dekker, New York, 417-574.