OJM  Vol.3 No.4 , November 2013
The Three Page Guide to the Most Important Results of M. S. El Naschie’s Research in E-Infinity Quantum Physics and Cosmology
ABSTRACT

In this short survey, we give a complete list of the most important results obtained by El Naschie’s E-infinity Cantorian space-time theory in the realm of quantum physics and cosmology. Special attention is paid to his recent result on dark energy and revising Einstein’s famous formula .


Cite this paper
M. A. Helal, L. Marek-Crnjac and J. He, "The Three Page Guide to the Most Important Results of M. S. El Naschie’s Research in E-Infinity Quantum Physics and Cosmology," Open Journal of Microphysics, Vol. 3 No. 4, 2013, pp. 141-145. doi: 10.4236/ojm.2013.34020.
References
[1]   M. S. El Naschie, O. E. Rossler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals,” Elsevier Science Ltd., Oxford, 1995.

[2]   M. Jammer, “Concepts of Space,” Dover Publications, New York, 1969.

[3]   B. G. Sidharth, “The Universe of Fluctuations (The Architecture of Space-Time and the Universe),” Springer, Dordrecht, 2005.

[4]   M. S. El Naschie, “Deterministic Quantum Mechanics versus Classical Mechanical Indeterminism,” International Journal of Nonlinear Science & Numerical Simulation, Vol. 8, No. 1, 2007, pp. 5-10.

[5]   M. S. El Naschie, “Average Exceptional Lie Group Hierarchy and High Energy Physics,” American Inst. of Physics, 9th Int. Symposium Proceedings, 7-9 June 2008, AIP Conferences, 101018, pp. 15-20.

[6]   J.-H. He, “Transfinite Physics: A Collection of Publication on E-Infinity Cantorian Space-Time Theory,” China Education and Culture Publishing Co., Beijing, 2005.

[7]   J.-H. He, E. Goldfain, L. D. Sigalotti and A. Mejias, “Beyond the 2006 Physics Nobel Price for COBE: An Introduction to E-infinity Theory,” China Education and Culture Publishing Co., Beijing, 2006.

[8]   J. Brindly, T. Kapitaniak and M. S. El Naschie, “Analytical Conditions for Strange Chaotic and Non-Chaotic Attractors of the Quasi Periodically Forced van der Pol Equation,” Physica D: Nonlinear Phenomena, Vol. 51, No. 1-3, 1991, pp. 28-38.
http://dx.doi.org/10.1016/0167-2789(91)90219-Y

[9]   M. S. El Naschie and S. Al Athel, “On the Connection between Statical and Dynamical Chaos,” Zeitschrift fur Naturforshung, Vol. 44a, 1989, pp. 645-650.

[10]   D. K. Campbell, “Chaos,” AIP, New York, 1990.

[11]   G. Cherbit, “Fractals,” J. Wiley, Chichester, 1991.

[12]   S. Weinberg, “The Quantum Theory of Fields,” Parts I, II, III, Cambridge Press, 1998,2000.

[13]   M. S. El Naschie, “Quantum Golden Field Theory—Ten theorems and Various Conjectures,” Chaos, Solitons & Fractals, Vol. 36, No. 5, 2008, pp. 1121-1125.
http://dx.doi.org/10.1016/j.chaos.2007.09.023

[14]   M. S. El Naschie, “Towards a Quantum Golden Field Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 4, 2007, pp. 477-482.

[15]   M. S. El Naschie, “High Energy Physics and the Standard Model from the Exceptional Lie Groups,” Chaos, Solitons & Fractals, Vol. 36, No. 1, 2008, pp. 1-17.
http://dx.doi.org/10.1016/j.chaos.2007.08.058

[16]   M. S. El Naschie, “P-Adic Unification of the Fundamental Forces and the Standard Model,” Chaos, Solitons & Fractals, Vol. 38, No. 4, 2008, pp. 1011-1012.
http://dx.doi.org/10.1016/j.chaos.2008.04.047

[17]   M. S. El Naschie, “On a Canonical Equation for All Fun- damental Interactions,” Chaos, Solitons & Fractals, Vol. 36, No. 5, 2008, pp. 1200-1204.
http://dx.doi.org/10.1016/j.chaos.2007.09.039

[18]   M. S. El Naschie, “Statistical Mechanics of Multi-Dimensional Cantor Sets Godel Theorem and Quantum Space-Time,” Journal of Franklin Institute, Vol. 33, No. 1, 1993, pp. 199-211.
http://dx.doi.org/10.1016/0016-0032(93)90030-X

[19]   M. S. El Naschie, “Complex Dynamics in 4D Peano-Hilbert Space,” Il Nuovo Cimento, Vol. 1, No. 5, 1992, pp. 583-594.

[20]   M. S. El Naschie, “Peano Dynamics as a Model for Turbulence and Strange Non-Chaotic Behavior,” Acta Physica Polonica A, Vol. 80, No. 1, 1991.

[21]   M. S. El Naschie, “Quantum Mechanics and the Possibility of a Cantorian Space-Time,” Chaos, Solitons & Fractals, Vol. 1, No. 5, 1991, pp. 485-487.
http://dx.doi.org/10.1016/0960-0779(91)90019-6

[22]   M. S. El Naschie, “Renormalization Semi-Groups and the Dimension of Cantorian Space-Time,” Chaos, Solitons & Fractals, Vol. 4, No. 7, 1994, pp. 1141-1145.
http://dx.doi.org/10.1016/0960-0779(94)90027-2

[23]   M. S. El Naschie, “On a Class of General Theories for High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 14, No. 4, 2002, pp. 649-668.
http://dx.doi.org/10.1016/S0960-0779(02)00033-4

[24]   M. S. El Naschie, “A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9

[25]   M. S. El Naschie, “The Theory of Cantorian Space-Time and High Energy Particle Physics (An Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. http://dx.doi.org/10.1016/j.chaos.2008.09.059

[26]   M. S. El Naschie, “Application of Chaos and Fractals in Fundamental Physics and Set Theoretical Resolution of the Two-Slit Experiment and Wave Collapse,” The 3rd International Symposium on Nonlinear Dynamics, Donghua University, China, 2010, pp. 7-8.

[27]   M. S. El Naschie, “Kaluza-Klein Unification—Some Possible Extensions,” Chaos, Solitons & Fractals, Vol. 37, No. 1, 2008, pp. 16-22.
http://dx.doi.org/10.1016/j.chaos.2007.09.079

[28]   M. S. El Naschie, “On Dualities between Nordstrom-Ka- luza-Klein Newtonian and Quantum Gravity,” Chaos, Solitons & Fractals, Vol. 36, No. 4, 2008, pp. 808-810.
http://dx.doi.org/10.1016/j.chaos.2007.09.019

[29]   M. S. El Naschie, “Superstring Theory: What It Cannot Do but E-Infinity Could,” Chaos, Solitons & Fractals, Vol. 29, No. 1, 2006, pp. 65-68.
http://dx.doi.org/10.1016/j.chaos.2005.11.021

[30]   G. N. Ord, “Fractal Space-Time,” Journal of Physics A: Mathematical and General, Vol. 16, No. 9, 1983, p. 1869.
http://dx.doi.org/10.1088/0305-4470/16/9/012

[31]   L. Nottale, “Fractal Space-Time and Microphysics,” World Scientific, Singapore, 1993.

[32]   M. S. El Naschie, “Quantum Mechanics, Cantorian Space-Time and the Heisenberg Uncertainty Principle,” Vistas in Astronomy, Vol. 37, 1993, pp. 249-252.
http://dx.doi.org/10.1016/0083-6656(93)90040-Q

[33]   A. Connes, “Non-commutative Geometry,” Academic Press, San Diego, 1994.

[34]   M. S. El Naschie, “Penrose Universe and Cantorian Space-Time as a Model for Non-Commutative Quantum Geometry,” Chaos, Solitons & Fractals, Vol. 9, No. 6, 1998, pp. 931-933.
http://dx.doi.org/10.1016/S0960-0779(98)00077-0

[35]   M. S. El Naschie, “Quantum Gravity Unification via Transfinite Arithmetic and Geometrical Averaging,” Chaos, Solitons & Fractals, Vol. 35, No. 2, 2008, pp. 252-256. http://dx.doi.org/10.1016/j.chaos.2007.07.019

[36]   M. S. El Naschie, “On a Transfinite Symmetry Group with 10 to the Power of 19 Dimensions,” Chaos, Solitons & Fractals, Vol. 36, No. 3, 2008, pp. 539-541.
http://dx.doi.org/10.1016/j.chaos.2007.09.006

[37]   Y. Tanaka, “The Mass Spectrum of Hadrons and E-Infi- nity Theory,” Chaos, Solitons & Fractals, Vol. 27, No. 4, 2006, pp. 851-863.
http://dx.doi.org/10.1016/j.chaos.2005.04.080

[38]   M. S. El Naschie, “Transfinite Harmonization by Taking the Dissonance Out of the Quantum Field Symphony,” Chaos, Solitons & Fractals, Vol. 36, No. 4, 2008, pp. 781-786. http://dx.doi.org/10.1016/j.chaos.2007.09.018

[39]   M. S. El Naschie, “Quantum E-Infinity Field Theoretical Derivation of Newton’s Gravitational Constant,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 4, 2007, pp. 469-474.

[40]   M. S. El Naschie, “From E-Eight to E-Infinity,” Chaos, Solitons & Fractals, Vol. 35, No. 2, 2008, pp. 285-290.
http://dx.doi.org/10.1016/j.chaos.2007.06.111

[41]   M. S. El Naschie, “Higgs Mechanism, Quarks Confinement and Black Holes as a Cantorian Space-Time Phase Transition Scenario,” Chaos, Solitons & Fractals, Vol. 41, No. 2, 2009, pp. 869-874.
http://dx.doi.org/10.1016/j.chaos.2008.04.013

[42]   M. S. El Naschie, “On Phase Transition to Quarks Confinement,” Chaos, Solitons & Fractals, Vol. 38, No. 2, 2008, pp. 332-333.
http://dx.doi.org/10.1016/j.chaos.2008.03.003

[43]   M. S. El Naschie, “On Quarks Confinement and Asymptotic Freedom,” Chaos, Solitons & Fractals, Vol. 37, No. 5, 2008, pp. 1289-1291.
http://dx.doi.org/10.1016/j.chaos.2008.02.002

[44]   M. S. El Naschie, “The Internal Dynamics of the Exceptional Lie Symmetry Groups Hierarchy and the Coupling Constants of Unification,” Chaos, Solitons & Fractals, Vol. 38, No. 4, 2008, pp. 1031-1038.
http://dx.doi.org/10.1016/j.chaos.2008.04.028

[45]   M. S. El Naschie, “The Exceptional Lie Symmetry Groups Hierarchy and the Expected Number of Higgs Bosons,” Chaos, Solitons & Fractals, Vol. 35, No. 2, 2008, pp. 268-273. http://dx.doi.org/10.1016/j.chaos.2007.07.036

[46]   M. S. El Naschie, “On D. Gross’ Criticism of S. Eddington and an Exact Calculation of ,” Chaos, Solitons & Fractals, Vol. 32, No. 4, 2007, pp. 1245-1249. http://dx.doi.org/10.1016/j.chaos.2006.10.035

[47]   M. S. El Naschie, “Rigorous Derivation of the Inverse Electromagnetic Fine Structure Constant ā = 1/137.036 Using Super String Theory and the Holographic Boundary of E-Infinity,” Chaos, Solitons & Fractals, Vol. 32, No. 3, 2007, pp. 893-895.
http://dx.doi.org/10.1016/j.chaos.2006.09.055

[48]   I. Affleck, “Golden Ratio Seen in a Magnet,” Nature, Vol. 464, No. 18, 2010, pp. 362-363.
http://dx.doi.org/10.1038/464362a

[49]   M. S. El Naschie, “Von Neumann Geometry and E-Infinity Quantum Spacetime,” Chaos, Solitons & Fractals, Vol. 9, No. 12, 1998, pp. 2023-2030.

[50]   M. S. El Naschie, “Arguments for the Compactness and Multiple Connectivity of Our Cosmic Spacetime,” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2787-2789. http://dx.doi.org/10.1016/j.chaos.2008.10.011

[51]   M. S. El Naschie, “Banach-Tarski Theorem and Cantorian Micro Spacetime,” Chaos, Solitons & Fractals, Vol. 5, No. 8, 1995, pp. 1503-1508.
http://dx.doi.org/10.1016/0960-0779(95)00052-6

[52]   M. S. El Naschie, “A Review of Applications and Results of E-Infinity Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 1, 2007, pp. 11-20.

[53]   M. S. El Naschie, “The Quantum Gravity Immirzi Pa- rameter—A General Physical and Topological Interpretation,” Gravitation and Cosmology, Vol. 19, No. 3, 2013, pp. 151-155.
http://dx.doi.org/10.1134/S0202289313030031

[54]   M. S. El Naschie, “A Resolution of the Cosmic Dark Energy via a Quantum Entanglement Relativity Theory,” Journal of Quantum Information Science, Vol. 3, No. 1, 2013, pp. 23-26.
http://dx.doi.org/10.4236/jqis.2013.31006

[55]   M. S. El Naschie, “Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a ‘Halo’ Energy of the Schrodinger Quantum Wave,” Journal of Modern Physics, Vol. 4, No. 5, 2013, pp. 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084

[56]   M. S. El Naschie, “The Missing Dark Energy of the Cosmos from Light Cone Topological Velocity and Scaling the Planck Scale,” Open Journal of Microphysics, Vol. 3, No. 3, 2013, pp. 64-70.
http://dx.doi.org/10.4236/ojm.2013.33012

[57]   M. S. El Naschie, “What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse,” International Journal of Astronomy and Astrophysics, Vol. 3, No. 3, 2013, pp. 205-211.
http://dx.doi.org/10.4236/ijaa.2013.33024

[58]   M. S. El Naschie, “A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 1, 2013, pp. 55-59.

[59]   L. Marek-Crnjac, “Modification of Einstein’s E = mc2 to E = mc2/22,” American Journal of Modern Physics, Vol. 2, No. 5, 2013, pp. 255-263.

[60]   M. S. El Naschie, “The Quantum Entanglement behind the Missing Dark Energy,” Journal of Modern Physics and Applications, Vol. 2, No. 1, 2013, pp. 88-96.

[61]   M. S. El Naschie, “Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method,” Journal of Modern Physics, Vol. 4, No. 6, 2013, pp. 757-760.
http://dx.doi.org/10.4236/jmp.2013.46103

[62]   J.-H. He, “Special Issue on Recent Developments on Dark Energy and Dark Matter,” Fractal Space-Time and Non-commutative Geometry in Quantum and High Energy Physics, Vol. 3, No. 1, 2013.

[63]   M. S. El Naschie and A. Helal, “Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography,” International Journal of As- tronomy and Astrophysics, Vol. 3, No. 3, 2013, pp. 318- 343. http://dx.doi.org/10.4236/ijaa.2013.33037

[64]   M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53.
http://dx.doi.org/10.4236/jqis.2011.12007

[65]   M. S. El Naschie, “Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 1A, 2013, pp. 78-88.

[66]   M. S. El Naschie, “Quantum Entanglement: Where Dark Energy and Negative Gravity Plus Accelerated Expansion of the Universe Comes from,” Journal of Quantum Information Science, Vol. 3, No. 2, 2013, pp. 57-77.
http://dx.doi.org/10.4236/jqis.2013.32011

[67]   M. S. El Naschie, “The Hydrogen Atom Fractal Spectra, the Missing Dark Energy of the Cosmos and Their Hardy Quantum Entanglement,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 3, 2013, pp. 167-169.
http://dx.doi.org/10.4236/ijmnta.2013.23023

[68]   M. S. El Naschie, “A Fractal Menger Sponge Spacetime Proposal to Reconcile Measurements and Theoretical Predictions of Cosmic Dark Energy,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 2, 2013, pp. 107-121.
http://dx.doi.org/10.4236/ijmnta.2013.22014

[69]   M. Krizek and L. Somer, “Antigravity—Its Manifestation and Origin,” International Journal of Astronomy and Astrophysics, Vol. 3, No. 3, 2013, pp. 227-235.
http://dx.doi.org/10.4236/ijaa.2013.33027

[70]   C. Calcagni, J. Magueijo and D. Fernandez, “Varying Electric Charges in Multi-Scale Spacetimes,” 2013.

[71]   D. Finkelstein, “Quantum Sets and Clifford Algebras,” International Journal of Theoretical Physics, Vol. 21, No. 6-7, 1982, pp. 489-503.
http://dx.doi.org/10.1007/BF02650180

[72]   L. H. Kauffman, “Virtual Logic,” Systems Research, Vol. 13, No. 3, 1996, pp. 293-310.
http://dx.doi.org/10.1002/(SICI)1099-1735(199609)13:3<293::AID-SRES99>3.0.CO;2-D

[73]   M. Pusey, J. Barrett and T. Randolph, “On the Reality of Quantum State,” Nature Physics, Vol. 8, 2012, pp. 475- 478.

[74]   M. S. El Naschie, “On Twisters in Cantorian E-Infinity Space,” Chaos, Solitons & Fractals, Vol. 12, No. 4, 2011, pp. 741-746.
http://dx.doi.org/10.1016/S0960-0779(00)00193-4

[75]   M. S. El Naschie, “On the Uncertainty of Cantorian Geometry and the Two-Slit Experiment,” Chaos, Solitons & Fractals, Vol. 9, No. 3, 1998. pp. 517-529.
http://dx.doi.org/10.1016/S0960-0779(97)00150-1

[76]   M. S. El Naschie, “Fractal Black Holes and Information,” Chaos, Solitons & Fractals, Vol. 29, No. 1, 2006, pp. 23-35. http://dx.doi.org/10.1016/j.chaos.2005.11.079

[77]   M. S. El Naschie, “Wild Topology, Hyperbolic Geometry and Fusion Algebra of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 13, No. 9, 2002, pp. 1935-1945. http://dx.doi.org/10.1016/S0960-0779(01)00242-9

[78]   M. S. El Naschie, “Quantum Loops, Wild Topology and Fat Cantor Sets in Transfinite High Energy Physics,” Chaos, Solitons & Fractals, Vol. 13, No. 5, 2002, pp. 1167-1174.
http://dx.doi.org/10.1016/S0960-0779(01)00210-7

[79]   M. S. El Naschie, “Average Symmetry, Stability and Ergodicity of Multidimensional Cantor Sets,” II Nuovo Cimento B Series 11, Vol. 109, No. 2, 1994, pp. 149-157.
http://dx.doi.org/10.1007/BF02727425

[80]   M. S. El Naschie, “The VAK of Vacuum Fluctuation, Spontaneous Self-Organization and Complexity Theory Interpretation of High Energy Particle Physics and the Mass Spectrum,” Chaos, Solitons & Fractals, Vol. 18, No. 2, 2003, pp. 401-420.
http://dx.doi.org/10.1016/S0960-0779(03)00098-5

[81]   L. Marek-Crnjac, G. Iovane, S. I. Nada and T. Zhong, “The Mathematical Theory of Finite and Infinite Dimensional Topological Spaces and Its Relevance to quantum gravity,” Chaos, Solitons & Fractals, Vol. 42, No. 4, 2009, pp. 1974-1979.
http://dx.doi.org/10.1016/j.chaos.2009.03.142

[82]   M. S. El Naschie, “The Feynman Path Integral and E-Infinity from Two-Slit Gedanken Experiment,” International Journal of Nonlinear Science & Numerical Simulation, Vol. 6, No. 4, 2005, pp. 335-342.

[83]   M. S. El Naschie, “Mohamed El Naschie Answers a Few Questions about this Month’s Emerging Research Front in the Field of Physics,” Thomason Essential Science Indicators. http://esi-topics.com/erf/2004/october04-MohamedElNaschie.html

[84]   M. S. El Naschie, “Revising Einstein’s E = mc2: A Theoretical Resolution of the Mystery of Dark Energy,” Conference Program and Abstracts of The Fourth Arab Int. Conference in Physics & Material Science, Bibliotheca Alexandrina, Alexandria, October 2012, pp. 1-3.

[85]   M. S. El Naschie, “Nash Embedding of Witten’s M-Theory and the Hawking-Hartle Quantum Wave of Dark Energy,” Journal of Modern Physics, Vol. 4, No. 10, 2013, pp. 1417-1428.
http://dx.doi.org/10.4236/jmp.2013.410170

 
 
Top