AM  Vol.4 No.12 , December 2013
Hybrid Adaptive Synchronization of Hyperchaotic Systems with Fully Unknown Parameters
ABSTRACT

In this paper, an adaptive control scheme is developed to study the hybrid synchronization behavior between two identical and different hyperchaotic systems with unknown parameters. This adaptive hybrid synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. The adaptive hybrid synchronization between two identical systems (hyperchaotic Chen system) and different systems (hyperchaotic Lorenz and hyperchaotic systems) are taken as two illustrative examples to show the effectiveness of the proposed method. Theoretical analysis and numerical simulations are shown to verify the results.


Cite this paper
Al-sawalha, M. (2013) Hybrid Adaptive Synchronization of Hyperchaotic Systems with Fully Unknown Parameters. Applied Mathematics, 4, 1621-1628. doi: 10.4236/am.2013.412220.
References
[1]   A. C. J. Luo, “A Theory for Synchronization of Dynamical Systems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 4, No. 5, 2009, pp. 19011951.
http://dx.doi.org/10.1016/j.cnsns.2008.07.002

[2]   F. Dou, J. Sun, W. Duan and K. Lu, “Controlling Hyperchaos in the New Hyperchaotic System,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, 2009, pp. 552-559.
http://dx.doi.org/10.1016/j.cnsns.2007.10.009

[3]   M. Rafikov and J. Balthazar, “On Control and Synchronization in Chaotic and Hyperchaotic Systems via Linear Feedback Control,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 7, 2008, pp. 1246-1255. http://dx.doi.org/10.1016/j.cnsns.2006.12.011

[4]   M. C. Ho, Y. C. Hung and C. H. Chou, “Phase and AntiPhase Synchronization of two Chaotic Systems by Using Active Control,” Physics Letters A, Vol. 296, No. 1, 2002, pp. 43-48.
http://dx.doi.org/10.1016/S0375-9601(02)00074-9

[5]   G. H Li and S. P. Zhou, “Anti-Synchronization in Different Chaotic Systems,” Chaos, Solitons & Fractals, Vol. 32, No. 2, 2007, pp. 516-520.
http://dx.doi.org/10.1016/j.chaos.2006.05.076

[6]   Z. Wang, “Anti-Synchronization in Two Non-Identical Hyperchaotic Systems with Known or Unknown Parameters,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 5, 2008, pp. 2366-2372.
http://dx.doi.org/10.1016/j.cnsns.2008.06.027

[7]   M. M. Al-Sawalha and M. S. M. Noorani, “Adaptive Anti-Synchronization of Chaotic Systems with Fully Unknown Parameters,” Computers & Mathematics with Applications, Vol. 59, No. 10, 2010, pp. 3234-3244.
http://dx.doi.org/10.1016/j.camwa.2010.03.010

[8]   M. M. Al-Sawalha and M. S. M. Noorani, “Adaptive Anti-Synchronization of two Identical and Different Hyperchaotic Systems with Uncertain Parameters,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 4, 2010, pp. 1036-1047.
http://dx.doi.org/10.1016/j.cnsns.2009.05.037

[9]   M. M. Al-Sawalha and M. S. M. Noorani, “On AntiSynchronization of Chaotic Systems via Nonlinear Controll,” Chaos, Solitons & Fractals, Vol. 42, No. 1, 2009, pp. 170-179.
http://dx.doi.org/10.1016/j.chaos.2008.11.011

[10]   M. M. Al-Sawalha and M. S. M. Noorani, “Anti-Synchronization of two Hyperchaotic Systems via Nonlinear Control,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 8, 2009, pp. 3402-3411.
http://dx.doi.org/10.1016/j.cnsns.2008.12.021

[11]   L. Ruihong, X. Wei and L, Shuang, “Anti-Synchronization on Autonomous and Non-Autonomous Chaotic Systems via Adaptive Feedback Control,” Chaos, Solitons & Fractals, Vol. 40, 2007, pp. 1288-1296.

[12]   J. Feng, S. Chen and C. Wang, “Adaptive Synchronization of Uncertain Hyperchaotic Systems Based on Parameter Identification,” Chaos, Solitons & Fractals, Vol. 26, No. 4, 2005, pp. 1163-1169.
http://dx.doi.org/10.1016/j.chaos.2005.02.027

[13]   S. Chen, J. Hua, C. Wang and J. Lu, “Adaptive Synchronization of Uncertain Rossler Hyperchaotic System Based on Parameter Identification,” Physics Letters A, Vol. 321, No. 1, 2004, pp. 50-55.
http://dx.doi.org/10.1016/j.physleta.2003.12.011

[14]   X. Wu and H. Zhang, “Synchronization of Two Hyperchaotic Systems via Adaptive Control,” Chaos, Solitons & Fractals, Vol. 39, No. 5, 2009, pp. 2268-2273.
http://dx.doi.org/10.1016/j.chaos.2007.06.100

[15]   X. Wua, Z. Guana and Z. Wua, “Adaptive Synchronization between Two Different Hyperchaotic Systems,” Nonlinear Analysis, Vol. 68, No. 5, 2008, pp. 1346-1351.
http://dx.doi.org/10.1016/j.na.2006.12.028

[16]   T. Gao, Z. Chen, Z. Yuan and D. Yu, “Adaptive Synchronization of a New Hyperchaotic System with Uncertain Parameters,” Chaos, Solitons & Fractals, Vol. 33, No. 3, 2007, pp. 922-928.
http://dx.doi.org/10.1016/j.chaos.2006.01.042

[17]   B. Wang and G. Wen, “On the Synchronization of a Hyperchaotic System Based on Adaptive Method,” Physics Letters A, Vol. 372, No. , 2008, pp. 3015-3020.
http://dx.doi.org/10.1016/j.physleta.2008.01.019

[18]   Q. Jia, “Adaptive Control and Synchronization of a New Hyperchaotic System with Unknown Parameters,” Physics Letters A, Vol. 362, No. 17, 2007, pp. 424-429.
http://dx.doi.org/10.1016/j.physleta.2006.10.044

[19]   H. Zhang, W. Huang, Z. Wang and T. Chai, “Adaptive Synchronization between Two Different Chaotic Systems with Unknown Parameters,” Physics Letters A, Vol. 350, No. 5-6, 2006, pp. 363-366.
http://dx.doi.org/10.1016/j.physleta.2005.10.033

[20]   R. H. Li, “A Special Full-State Hybrid-Synchronization in Symmetrical Chaotic System,” Applied Mathematics and Computation, Vol. 200, No. 1, 2008, pp. 319-321.
http://dx.doi.org/10.1016/j.amc.2007.11.010

[21]   Q. Xie, G. Chen and E. M. Bollt, “Hybrid Chaos Synchronization and its Application in Information Processing,” Mathematical and Computer Modeling, Vol. 35, No. 1-2, 2002, pp. 145-163.
http://dx.doi.org/10.1016/S0895-7177(01)00157-1

[22]   Q. Zhang and J. Lu, “Full State Hybrid Lag Projective Synchronization in Chaotic (Hyperchaotic) Systems,” Physics Letters A, Vol. 372, No. 9, 2008, pp. 1416-1421.
http://dx.doi.org/10.1016/j.physleta.2007.09.051

[23]   J. Chen, H. Chen and Y. Lin, “Synchronization and AntiSynchronization Coexist in Chen-Lee Chaotic Systems,” Chaos Solitions & Fractals, Vol. 39, No. 2, 2009, pp. 707-716.
http://dx.doi.org/10.1016/j.chaos.2007.01.104

[24]   W. Sun, Z. Chen, Y. Lu and S. Chen, “An intriguing Hybrid Synchronization Phenomenon of Two Coupled Complex Networks,” Applied Mathematics and Computation, Vol. 216, No. 8, 2010, pp. 2301-2309.
http://dx.doi.org/10.1016/j.amc.2010.03.066

[25]   S. Vaidyanathan and S. Rasappan, “Hybrid Chaos Synchronization of 4D Hyperchaotic Qi and Jia Systems by Active Nonlinear Control,” International Journal of Distributed and Parallel Systems (IJDPS), Vol. 2, No. 2, 2011, pp. 83-94.
http://dx.doi.org/10.5121/ijdps.2011.2208

[26]   L. Yuxia, K. Wallace and G. Chen, “Generating Hyperchaos via State Feedback Control,” International Journal of Bifurcation and Chaos, Vol. 15, No. 10, 2005, pp. 3367-3375.
http://dx.doi.org/10.1142/S0218127405013988

[27]   J. Park, “Adaptive Synchronization of Hyperchaotic Chen System with Uncertain Parameters,” Chaos, Solitons & Fractals, Vol. 26, No. 3, 2005, pp. 959-964.
http://dx.doi.org/10.1016/j.chaos.2005.02.002

[28]   Q. Jia, “Hyperchaos Generated from the Lorenz Chaotic System and Its Control,” Physics Letters A, Vol. 366, No. 3, 2007, pp. 217-222.
http://dx.doi.org/10.1016/j.physleta.2007.02.024

[29]   Q. Jia, “Projective Synchronization of a New Hyperchaotic Lorenz System,” Physics Letters A, Vol. 370, No. 1, 2007, pp. 40-45.
http://dx.doi.org/10.1016/j.physleta.2007.05.028

[30]   A. Chen, J. Lu, J. Lu and S. Yu, “Generating Hyperchaotic Lu Attractor via State Feedback Control,” Physica A, Vol. 364, 2006, pp. 103-110.
http://dx.doi.org/10.1016/j.physa.2005.09.039

[31]   J. Lasalle and S. Lefschtg, “Stability by Lyapunovs Direct Method with Application,” Academic Press, New York, 1961.

 
 
Top