[1] J. B. Lasserre, “On Representations of the Feasible Set in Convex Optimization,” Optimization Letters, Vol. 4, No. 1, 2010, pp. 1-5.
http://dx.doi.org/10.1007/s11590-009-0153-6
[2] C. R. Bector, S. Chandra and M. K. Bector, “Sufficient Optimality Conditions and Duality for a Quasiconvex Programming Problem,” Journal of Optimization Theory and Applications, Vol. 59, No. 2, 1988, pp. 209-221.
[3] O. L. Mangasian, “Non-Linear Programming,” McGraw Hill, New York, 1969.
[4] S. Nobakhtian, “Sufficiency in Nonsmooth Multiobjective Programming Involving Generalized (F, p)-Convexity,” Journal of Optimization Theory and Applications, Vol. 130, No. 2, 2006, pp. 359-365.
http://dx.doi.org/10.1007/s10957-006-9105-9
[5] J. Dutta and C. S. Lalitha, “Optimality Conditions in Convex Optimization Revisited,” Optimization Letters, Vol. 7, No. 2, 2013, pp. 221-229.
http://dx.doi.org/10.1007/s11590-011-0410-3
[6] F. H. Clarke, “Optimization and Non-smooth Analysis,” Wiley, New York, 1983.
[7] L. Coladas, Z. Li and S. Wang, “Optimality Conditions for Multiobjective and Nonsmooth Minimization in Abstract Spaces,” Bulletin of Australian Mathematical Society, Vol. 50, No. 2, 1994, pp. 205-218.
http://dx.doi.org/10.1017/S0004972700013678
[8] S. Aggarwal, “Optimality and Duality in Mathematical Programming Involving Generalized Convex Functions,” Ph.D. Thesis, University of Delhi, Delhi, 1998.
[9] T. Weir, B. Mond and B. D. Craven, “Weak Minimization and Duality,” Numerical Functional Analysis and Optimization, Vol. 9, No. 1-2 ,1987, pp. 181-192.
[10] J. Jahn, “Vector Optimization,” Springer Verlag, New York, 2003.
[11] S. K. Suneja, S. Aggarwal and S. Davar, “Multiobjective Symmetric Duality Involving Cones,” European Journal of Operational Research, Vol. 141, No. 3, 2002, pp. 471479.
http://dx.doi.org/10.1016/S0377-2217(01)00258-2