Matrix Padé-Type Method for Computing the Matrix Exponential

References

[1] C. B. Moler and C. F. Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix,” SIAM Review, Vol. 20, No. 4, 1978, pp. 801-836. doi:10.1137/1020098

[2] C. B. Moler and C. F. Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” SIAM Review, Vol. 45, No. 1, 2003, pp. 3-49. doi:10.1137/S00361445024180

[3] N. J. Higham, “The Scaling and Squaring Method for the Matrix Exponential Revisited,” SIAM Journal on Matrix Analysis and Application, Vol. 26, No. 4, 2005, pp. 1179-1193. doi:10.1137/04061101X

[4] N. J. Higham, “The Scaling and Squaring Method for the Matrix Exponential Revisited,” SIAM Review, Vol. 51, No. 4, 2009, pp. 747-764. doi:10.1137/090768539

[5] C. Gu, “Matrix Padé-Type Approximant and Directional Matrix Padé Approximant in the Inner Product Space,” Journal of Computational and Applied Mathematics, Vol. 164-165, No. 1, 2004, pp. 365-385. doi:10.1016/S0377-0427(03)00487-4

[6] C. Brezinski, “Rational Approximation to Formal Power Series,” Journal of Approximation Theory, Vol. 25, No. 4, 1979, pp. 295-317. doi:10.1016/0021-9045(79)90019-4

[7] C. Brezinski, “Padé-Type Approximation and General Orthogonal Polynomials,” Birkh?auser-Verlag, Basel, 1980.

[8] A. Draux, “Approximants de Type Padé et de Table,” Little: Publication A, University of Lille, Lille, No. 96, 1983.

[9] C. Gu, “Generalized Inverse Matrix Padé Approximation on the Basis of Scalar Products,” Linear Algebra and Its Applications, Vol. 322, No. 1-3, 2001, pp. 141-167. doi: 10.1016/S0024-3795(00)00230-5

[10] C. Gu, “A Practical Two-Dimensional Thiele-Type Matrix Padé Approximation,” IEEE Transactions on Automatic Control, Vol. 48, No. 12, 2003, pp. 2259-2263. doi: 10.1109/TAC.2003.820163

[11] N. J. Higham, “Functions of Matrices: Theory and Computation,” SIAM Publisher, Philadelphia, 2008. doi:10.11 37/1.9780898717778

[12] A. Sidi, “Rational Approximations from Power Series of Vector-Valued Meromorphic Functions,” Journal of Approximation Theory, Vol. 77, No. 1, 1994, pp. 89-111. doi:10.1006/jath.1994.1036

[13] R. Mathias, “Approximation of Matrix-Valued Functions,” SIAM Journal on Matrix Analysis and Application, Vol. 14, No. 4, 1993, pp. 1061-1063. doi:10.1137/0614070

[14] J. D. Lawson, “Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants,” SIAM Journal on Numerical Analysis, Vol. 4, No. 3, 1967, pp. 372-380. doi:10.1137/0704033

[15] A. H. Al-Mohy and N. J. Higham, “A New Scaling and Squaring Algorithm for the Matrix,” SIAM Journal on Matrix Analysis and Application, Vol. 31, No. 3, 2009, pp. 970-989. doi:10.1137/09074721X