OJRA  Vol.3 No.4 , November 2013
Leukotriene-A4-Hydrolase and Basic Aminopeptidase Activities Are Related with Collagen-Induced Arthritis in a Compartment-Dependent Manner
Objective: Previous study demonstrated the involvement of basic aminopeptidase (APB) activity in the development of collagen-induced arthritis (CIA). Two zinc dependent metalloenzymes (EC and EC are known to exhibit concomitantly APB and leukotriene-A4-hydrolase (LT-A4-H) activities. Influence of the interrelationship between both activities on arthritic processes, however, is presently uncertain. This study aimed to compare these activities in CIA. Methods: CIA was induced in rats and arthritis was assessed macroscopically. Ultracentrifugation was used to separate soluble (S) and solubilized membrane-bound (M) fractions from peripheral blood mononuclear cells (PBMCs) and synovial tissue (ST). Enzyme immunoassay was used to measure LT-A4-H activity, and Real Time Polymerase Chain Reaction was used for evaluating EC and EC gene expressions. Results: The existence of genes for EC and EC was demonstrated in the ST. Compared with control, LT-A4-H activity increased in synovial fluid (SF) and in S-PBMCs of CIA-arthritic and CIA-resistant and in M-ST of CIA-resistant, while it decreased in M-PBMCs of CIA-arthritic and CIA-resistant. In all these locations APB activity remained unchanged or inversely correlated with LT-A4-H activity. Conclusions: LT-A4-H and APB activities in joint-related samples are associated, for the first time, with EC and EC genes, exhibiting a compartment-dependent differential modulation of their specificity, efficiency and/or affinity or an inverse concurrent pattern. Changes in LT-A4-H activity have implications for development or resistance to arthritis in CIA model with a potential to be a diagnostic tool.

Cite this paper
M. Mendes and P. Silveira, "Leukotriene-A4-Hydrolase and Basic Aminopeptidase Activities Are Related with Collagen-Induced Arthritis in a Compartment-Dependent Manner," Open Journal of Rheumatology and Autoimmune Diseases, Vol. 3 No. 4, 2013, pp. 255-262. doi: 10.4236/ojra.2013.34040.

[1]   R. Holmdahl, J. C. Lorentzen, S. Lu, P. Olofsson, L. Wester, J. Holmberg and U. Pettersson, “Arthritis Induced in Rats with Nonimmunogenic Adjuvants as Models for Rheumatoid Arthritis,” Immunological Reviews, Vol. 184, No. 1, 2001, pp. 184-202. http://dx.doi.org/10.1034/j.1600-065x.2001.1840117.x

[2]   J. M. Stuart, A. S. Townes and A. H. Kang, “Collagen Autoimmune Arthritis,” Annual Reviews in Immunology, Vol. 2, 1984, pp. 199-218. http://dx.doi.org/10.1146/annurev.iy.02.040184.001215

[3]   G. S. Panayi, “B Cells: A Fundamental Role in the Pathogenesis of Rheumatoid Arthritis?” Rheumatology, Vol. 44, No. S2, 2005, pp. ii3-ii7. http://dx.doi.org/10.1093/rheumatology/keh616

[4]   H. Kim, J. Bang, H. W. Chang, J. Y. Kim, K. U. Park, S. H. Kim, K. J. Lee, C. H. Cho, I. Hwang, S. D. Park, E. Ha and S. W. Jung, “Anti-Inflammatory Effect of Quetiapine on Collagen-Induced Arthritis of Mouse,” European Journal of Pharmacology, Vol. 678, No. 1-3, 2012, pp. 55-60. http://dx.doi.org/10.1016/j.ejphar.2011.12.017

[5]   D. D. Brand, A. H. Kang and E. F. Rosloniec, “Immunopathogenesis of Collagen Arthritis,” Springer Seminars in Immunopathology, Vol. 25, No. 1, 2003, pp. 3-18. http://dx.doi.org/10.1007/s00281-003-0127-1

[6]   L. K. Myers, E. F. Rosloniec, M. A. Cremer and A. H. Kang, “Collagen-Induced Arthritis, an Animal Model of Autoimmunity,” Life Sciences, Vol. 61, No. 19, 1997, pp. 1861-1878. http://dx.doi.org/10.1016/S0024-3205(97)00480-3

[7]   M. M. Griffiths, “Immunogenetics of Collagen-Induced Arthritis in Rats,” International Reviews of Immunology, Vol. 4, No. 1, 1988, pp. 1-15. http://dx.doi.org/10.3109/08830188809044766

[8]   J. M. Stuart, W. C. Watson and A. H. Kang, “Collagen Autoimmunity and Arthritis,” The FASEB Journal, Vol. 2, No. 14, 1988, pp. 2950-2956.

[9]   D. E. Trentham, A. S. Townes and A. H. Kang, “Autoimmunity to Type II Collagen an Experimental Model of Arthritis,” The Journal of Experimental Medicine, Vol. 146, No. 3, 1977, pp. 857-868. http://dx.doi.org/10.1084/jem.146.3.857

[10]   M. A. Cremer, E. F. Rosloniec and A. H. Kang, “The Cartilage Collagens: A Review of Their Structure, Organization, and Role in the Pathogenesis of Experimental Arthritis in Animals and in Human Rheumatic Disease,” Journal of Molecular Medicine, Vol. 76, No. 3-4, 1998, pp. 275-288. http://dx.doi.org/10.1007/s001090050217

[11]   M. A. Hietala, K. S. Nandakumar, L. Persson, S. Fahlen, R. Holmmahl and M. Pekna, “Complement Activation by Both Classical and Alternative Pathways Is Critical for the Effector Phase of Arthritis,” European Journal of Immunology, Vol. 34, No. 4, 2004, pp. 1208-1216. http://dx.doi.org/10.1002/eji.200424895

[12]   G. Tu, W. Xu, H. Huang and S. Li, “Progress in the Development of Matrix Metalloproteinase Inhibitors,” Current Medicinal Chemistry, Vol. 15, No. 14, 2008, pp. 1388-1395. http://dx.doi.org/10.2174/092986708784567680

[13]   M. Xue, L. March, P. N. Sambrook and C. J. Jackson, “Differential Regulation of Matrix Metalloproteinase 2 and Matrix Metalloproteinase 9 by Activated Protein C: Relevance to Inflammation in Rheumatoid Arthritis,” Arthritis & Rheumatism, Vol. 56, No. 9, 2007, pp. 2864-2874. http://dx.doi.org/10.1002/art.22844

[14]   M. H. Lee and G. Murphy, “What Are the Roles of Metalloproteinases in Cartilage and Bone Damage?” Annals of the Rheumatic Diseases, Vol. 64, No. S4, 2005, pp. iv44-iv47. http://dx.doi.org/10.1136/ard.2005.042465

[15]   V. Pham, M. Cadel, C. Gouzy-Darmon, C. Hanquez, M. C. Beinfeld, P. Nicolas, C. Etchebest and T. Foulon, “Aminopeptidase B, a Glucagon-Processing Enzyme: Site Directed Mutagenesis of the Zn2+-Binding Motif and Molecular Modeling,” BMC Biochemistry, Vol. 8, 2007, p. 21. http://dx.doi.org/10.1186/1471-2091-8-21

[16]   T. D. Penning, M. A. Russell, B. B. Chen, H. Y. Chen, C. D. Liang, M. W. Mahoney, J. W. Malecha, J. M. Miyashiro, S. S. Yu, L. J. Askonas, J. K. Gierse, E. I. Harding, M. K. Highkin, J. F. Kachur, S. H. Kim, D. Villani-Price, E. Y. Pyla, N. S. Ghoreishi-Haack and W. G. Smith, “Synthesis of Potent Leukotriene A(4) Hydrolase Inhibitors. Identification of 3-[methyl[3-[4-(phenylmethyl)phenoxy] propyl]amino] propanoic Acid,” Journal of Medicinal Chemistry, Vol. 45, No. 16, 2002, pp. 3482-3490. http://dx.doi.org/10.1021/jm0200916

[17]   T. Foulon, S. Cadel and P. Cohen, “Aminopeptidase B (EC,” The International Journal of Biochemistry & Cell Biology, Vol. 31, No. 7, 1999, pp. 747-750. http://dx.doi.org/10.1016/S1357-2725(99)00021-7

[18]   M. J. Butler, “Metallopeptidases,” In: A. J. Barrett, N. D. Rawlings and J. F. Woessner, Eds., Handbook of Proteolytic Enzymes, Academic Press, London, 1998, pp. 1022-1029.

[19]   C. A. Grice, K. L. Tays, B. M. Savall, J. Wei, C. R. Butler, F. U. Axe, S. D. Bembenek, A. M. Fourie, P. J. Dunford, K. Lundeen, F. Coles, X. Xue, J. P. Riley, K. N. Williams, L. Karlsson and J. P. Edwards, “Identification of a Potent, Selective, and Orally Active Leukotriene A4 Hydrolase Inhibitor with Anti-Inflammatory Activity,” Journal of Medicinal Chemistry, Vol. 51, No. 14, 2008, pp. 4150-4169. http://dx.doi.org/10.1021/jm701575k

[20]   M. T. Mendes and P. F. Silveira, “Quantification of Leukotriene (LT) B4 and LT-A4-Hydrolase (LTA4H) by HPLC and Enzyme Immunoassay (EIA) in an Experimental Model of Arthritis,” Abstracts of 14th International Congress on Antiphospholipid Antibodies & 4th Latin American Congress on Autoimmunity (APLA LACA 2013), Rio de Janeiro, 2013. http://www2.kenes.com/apla-laca/pages/home.aspx

[21]   P. C. Rudberg, F. Tholander, M. M. Thunnissen, B. Samuelsson and J. Z. Haeggstrom, “Leukotriene A4 Hydrolase: Selective Abrogation of Leukotriene B4 Formation by Mutation of Aspartic Acid 375,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 7, 2002, pp. 4215-4220. http://dx.doi.org/10.1073/pnas.072090099

[22]   D. Mantle, G. Falkous and D. Walker, “Quantification of Protease Activities in Synovial Fluid from Rheumatoid and Osteoarthritis Cases: Comparison with Antioxidant and Free Radical Damage Markers,” Clinica Chimica Acta, Vol. 284, No. 1, 1999, pp. 45-58. http://dx.doi.org/10.1016/S0009-8981(99)00055-8

[23]   F. A. Fitzpatrick, R. Lepley, L. Orning and K. Duffin, “Suicide Inactivation of Leukotriene A4 Hydrolase/Aminopeptidase,” Annals of the New York Academy of Sciences, Vol. 744, 1994, pp. 31-38. http://dx.doi.org/10.1111/j.1749-6632.1994.tb52721.x

[24]   M. Hui and K. S. Hui, “A Novel Aminopeptidase with Highest Preference for Lysine,” Neurochemical Research, Vol. 31, No. 1, 2006, pp. 95-102. http://dx.doi.org/10.1007/s11064-005-9234-9

[25]   C. Piesse, S. Cadel, C. Gouzy-Darmona, J. C. Jeanny, V. Carriere, D. Goidin, L. Jonet, D. Gourdji, P. Cohen and T. Foulon, “Expression of Aminopeptidase B in the Developing and Adult Rat Retina,” Experimental Eye Research, Vol. 79, No. 5, 2004, pp. 639-648. http://dx.doi.org/10.1016/j.exer.2004.06.030

[26]   K. M. Fukasawa, J. Hirose, T. Hata and Y. Ono, “Aspartic Acid 405 Contributes to the Substrate Specificity of Aminopeptidase B,” Biochemistry, Vol. 45, No. 38, 2006, pp. 11425-11431. http://dx.doi.org/10.1021/bi0604577

[27]   S. Cadel, T. Foulon, A. Viron, A. Balogh, S. Midol-Monnet, N. Noel and P. Cohen, “Aminopeptidase B from the Rat Testis Is a Bifunctional Enzyme Structurally Re- lated to Leukotriene-A4 Hydrolase,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, No. 7, 1997, pp. 2963-2968. http://dx.doi.org/10.1073/pnas.94.7.2963

[28]   M. T. Mendes, S. Murari-do-Nascimento, I. R. Torrigo, R. F. Alponti, S. C. Yamasaki and P. F. Silveira, “Basic Aminopeptidase Activity Is an Emerging Biomarker in Collagen-Induced Rheumatoid Arthritis,” Regulatory Peptides, Vol. 167, No. 2-3, 2011, pp. 215-221. http://dx.doi.org/10.1016/j.regpep.2011.02.012

[29]   S. C. Yamasaki, S. Murari-do-Nascimento and P. F. Silveira, “Neutral Aminopeptidase and Dipeptidyl Peptidase IV in the Development of Collagen II-Induced Arthritis,” Regulatory Peptides, Vol. 173, No. 1-3, 2012, pp. 47-54. http://dx.doi.org/10.1016/j.regpep.2011.09.004

[30]   S. Hwanga and V. Hooka, “Zinc Regulation of Aminopeptidase B Involved in Neuropeptide Production,” FEBS Letters, Vol. 582, No. 17, 2008, pp. 2527-2531. http://dx.doi.org/10.1016/j.febslet.2008.06.017

[31]   M. Zaitsu, Y. Hamasaki, M. Matsuo, A. Kukita, K. Tsuji, M. Miyazaki, R. Hayasaki, E. Muro, S. Yamamoto, I. Kobayashi, T. Ichimaru, O. Kohashi and S. Miyazaki, “New Induction of Leukotriene A (4) Hydrolase by Interleukin-4 and Interleukin-13 in Human Polymorphonuclear Leu-kocytes,” Blood, Vol. 96, No. 2, 2000, pp. 601-609.

[32]   J. Gut, D. W. Goldman, G. C. Jamieson and J. R. Trudell, “Conversion of Leukotriene A4 to Leukotriene B4: Catalysis by Human Liver Microsomes under Anaerobic Conditions,” Archives of Biochemistry and Biophysics, Vol. 259, No. 2, 1987, pp. 497-509. http://dx.doi.org/10.1016/0003-9861(87)90516-9

[33]   G. D. Anderson, K. L. Keys, P. A. De Ciechi and J. L. Masferrer, “Combination Therapies That Inhibit Cyclooxygenase-2 and Leukotriene Synthesis Prevent Disease in Murine Collagen Induced Arthritis,” Inflammation Re- search, Vol. 58, No. 2, 2009, pp. 109-117. http://dx.doi.org/10.1007/s00011-009-8149-3

[34]   A. Ryan and C. Godson, “Lipoxins: Regulators of Resolution,” Current Opinion in Pharmacology, Vol. 10, No. 2, 2010, pp. 166-172. http://dx.doi.org/10.1016/j.coph.2010.02.005

[35]   J. Z. Haeggstrom, “Structure, Function, and Regulation of Leukotriene A4 Hydrolase,” American Journal of Respiratory and Critical Care Medicine, Vol. 161, No. 2, 2000, pp. S25-S31. http://dx.doi.org/10.1164/ajrccm.161.supplement_1.ltta-6

[36]   A. W. Ford-Hutchinson, “Leukotriene B4 in Inflammation,” Critical ReviewsTM in Immunology, Vol. 10, No. 1, 1990, pp. 1-12.

[37]   B. Samuelsson, S. E. Dahlen, J. A. Lindgren, C. A. Rou- zer and C. N. Serhan, “Leukotrienes and Lipoxins: Structures, Biosynthesis, and Biological Effects,” Science, Vol. 237, No. 4819, 1987, pp. 1171-1176. http://dx.doi.org/10.1126/science.2820055

[38]   E. Grage-Griebenow, J. Baran, H. Loppnow, M. Los, M. Ernst, H. D. Flad and J. Pryjma, “An Fcy Receptor I (CD64)-Negative Subpopulation of Human Peripheral Blood Monocytes Is Resistant to Killing by Antigen-Activated CD4-Positive Cytotoxic T Cells,” European Journal of Immunology, Vol. 27, No. 9, 1997, pp. 2358-2365. http://dx.doi.org/10.1002/eji.1830270934

[39]   M. E. Harris, M. Liljestrom and L. Klareskog, “Characteristics of Synovial Fluid Effusion in Collagen-Induced Arthritis (CIA) in the DA Rat; a Comparison of Histology and Antibody Reactivity in an Experimental Chronic Arthritis Model and Rheumatoid Arthritis (RA),” Clinical and Experimental Immunology, Vol. 107, No. 3, 1997, pp. 480-484. http://dx.doi.org/10.1046/j.1365-2249.1997.3311221.x

[40]   K. M. Fukasawa, K. Fukasawa, M. Harada, J. Hirose, T. Izumi and T. Shimizu, “Aminopeptidase B Is Structurally Related to Leukotriene-A4 Hydrolase but Is Not a Bifunctional Enzyme with Epoxide Hydrolase Activity,” Bio-chemical Journal, Vol. 339, No. Pt 3, 1999, pp. 497-502.

[41]   E. O. De Oliveira, K. Wanga, H. Kong, S. Kim, M. Miessau, R. J. Snelgrove, Y. M. Shim and M. Paige, “Effect of the Leukotriene A4 Hydrolase Aminopeptidase Augmentor 4-Methoxydiphenylmethane in a Pre-Clinical Model of Pulmonary Emphysema,” Bioorganic & Medicinal Chemistry Letters, Vol. 21, No. 22, 2001, pp. 6746-6750. http://dx.doi.org/10.1016/j.bmcl.2011.09.048