MSA  Vol.4 No.11 , November 2013
Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO)

In this paper, a novel solid state Nitric Oxide (NO) sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) encapsulated in a siloxane-poly(oxypropylene) (PPO) matrix was developed. Nitric oxide (NO), a free radical molecule, has numerous roles in various physiological functions, such as the regulation of blood pressure, immune response to bacterial infection, and nervous systems. Siloxane-polyether hybrid materials, for example siloxane-poly(oxypropylene) (PPO), are easy to prepare, transparent and flexible. The combination of all these characteristics in a unique material allows it to be used in several scientific and technological areas, including human health. NO radical is trapped in FeDETC, which allows its detection by electron paramagnetic resonance (EPR). FeDETC was added while PPO was a sol, which was then left in air for gelation. The novel sensor was dived directly into a solution of NO, when the NO-FeDETC complex was formed. Our results show that the novel sensor responds to NO, with similar sensitivity as previously published sensors. PPO sensors present a strong EPR signal and a high stability, keeping its signal for 45 days. We have studied ways to accelerate the NO release from the sensor, in order to study its potential as a drug delivery system. We observed an acceleration in NO release by using a modulated magnetic field of 40 G at 100 kHz; as well as by UV irradiation. Thermal induced NO release was also tested by heating NO-FeDETC PPO up to 50°C, with good results.

Cite this paper: R. Herculano, C. Brunello, J. Melo Jr., M. Martins, F. Borges, L. Chiavacci and C. Graeff, "Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO)," Materials Sciences and Applications, Vol. 4 No. 11, 2013, pp. 683-688. doi: 10.4236/msa.2013.411085.

[1]   S. Nagassaki, R. D. Herculano, C. F. O. Graeff and J. E. Tanus-Santos, “eNOS T-786C Polymorphism Affects Atorvastatin-Induced Changes in Erythrocyte Membrane Fluidity,” European Journal of Clinical Pharmacology, Vol. 65, No. 4, 2009, pp. 385-392.

[2]   S. Archer, “Measurement of Nitric Oxide in Biological Models,” FASEB Journal, Vol. 7, No. 2, 1993, pp. 349-360.

[3]   S. Moncada, R. M. J. Palmer and E. A. Higgs, “Nitric Oxide: Physiology, Pathophysiology and Pharmacology,” Pharmacological Reviews, Vol. 43, No. 2, 1991, pp. 109-142.

[4]   P. Muriel and G. Sandoval, “Nitric Oxide and Peroxynitrite Anion Modulate Liver Plasma Membrane Fluidity and Na(+)/K(+)-Atpase Activity,” Nitric Oxide, Vol. 4, No. 4, 2000, pp. 333-342.

[5]   D. D. Rees, R. M. Palmer and S. Moncada, “Role of Endothelium-Derived Nitric Oxide in the Regulation of Blood Pressure,” Proceedings of the National Academy of Sciences USA, Vol. 86, No. 9, 1989, pp. 3375-3378.

[6]   R. J. van’t Hof and S. H. Ralston, “Nitric Oxide and Bone,” Immunology, Vol. 103, No. 3, 2001, pp. 255-261.

[7]   P. Collin-Osdoby, G. A. Nickols and P. Osdoby, “Bone Cell Function, Regulation, and Communication: A Role for Nitric Oxide,” Journal of Cellular Biochemistry, Vol. 57, No. 3, 1995, pp. 399-408.

[8]   U. Forstermann and T. Münzel, “Endothelial Nitric Oxide Synthase in Vascular Disease from Marvel to Menace,” Circulation, Vol. 113, No. 13, 2006, pp. 1708-1714.

[9]   U. Forstermann, E. I. Closs, J. S. Pollock, M. Nakane, P. Schwarz, I. Gath and H. Kleinert, “Nitric Oxide Synthase Isozymes: Characterization, Purification, Molecular Cloning, and Functions,” Hypertension, Vol. 23, No. 6, 1994, pp. 1121-1131.

[10]   C. S. Raman, H. Li, P. Martasek, V. Kral, B. S. Masters and T. L. Poulos, “Crystal Structure of Constitutive Endothelial Nitric Oxide Synthase: A Paradigm for Pterin Function Involving a Novel Metal Center,” Cell, Vol. 95, No. 7, 1998, pp. 939-950.

[11]   R. D. Herculano, C. A. Brunello and C. F. O. Graeff, “Solid State Nitric Oxide Sensor Using a Latex Rubber Matrix,” Macromolecular Symposia, Vol. 245-246, No. 1, 2006, pp. 529-532.

[12]   R. D. Herculano, C. A. Brunello and C. F. O. Graeff, “Optimization of a Novel Nitric Oxide Sensor Using a Latex Rubber Matrix,” Journal of Applied Sciences, Vol. 7, No. 23, 2007, pp.3801-3805.

[13]   R. D. Herculano, L. C. Tzu, C. P. Silva, C. A. Brunello, A. A. A. Queiroz, A. Kinoshita and C. F. O. Graeff, “Nitric Oxide Release Using Natural Rubber Latex as Matrix,” Materials Research, Vol. 14, No. 3, 2011, pp. 355-359.

[14]   J. P. de Melo-Jr, J. C. Biazotto, C. A. Brunello and C. F. O. Graeff, “Solid State Nitric Oxide Sensor Prepared by Sol-Gel Entrapment of Iron(III) Diethyldithiocarbamate in a Silica Matrix,” Journal of Non-Crystalline Solids, Vol. 348, 2004, pp. 235-239.

[15]   C. Ereno, S. A. C. Guimaraes, S. Pasetto, R. D. Herculano, C. P. Silva, C. F. O. Graeff, O. Tavano, O. Baffa and A. Kinoshita, “Latex Use as an Occlusive Membrane for Guided Bone Regeneration,” Journal of Biomedical Materials Research Part A, Vol. 95A, No. 3, 2010, pp. 932-939.

[16]   R. D. Herculano, A. A. A. Queiroz, A. Kinoshita, O. N. Oliveira Jr. and C. F. O. Graeff, “On the Release of Metronidazole from Natural Rubber Latex Membranes,” Material Science Engineering C, Vol. 31, No. 2, 2011, pp. 272-275.

[17]   M. Ferreira, R. J. Mendonca, J. Coutinho-Netto and M. Mulato, “Angiogenic Properties of Natural Rubber Latex Biomembranes and the Serum Fraction of Hevea Brasiliensis,” Brazilian Journal of Physics, Vol. 39, No. 3, 2009, pp. 564-596.

[18]   F. Mrué, J. Coutinho-Netto, R. Ceneviva, J. J. Lachat, J. A. Thomazini and H. Tambelini, “Evaluation of the Biocompatibility of a New Biomembrane,” Materials Research, Vol. 7, No. 2, 2004, pp. 277-283.

[19]   J. A. Thomazini, F. Mrué, J. Coutinho-Netto, J. J. Lachat, R. Ceneviva and A. C. Zborowski, “Morphological and Biochemical Characterization of a Prosthesis Manufactured from Natural Latex of Hevea Brasiliensis for Medical Utilization,” Acta Microscópica, Vol. 6, No. B, 1997, pp. 798-799.

[20]   J. A. Chaker, K. Dahmouche, C. V. Santilli, S. H. Pulcinelli and A. Craievich, “Gelation and Drying of Weakly Bonded Silica-PPO Nanocomposites,” Journal of Applied Crystallography, Vol. 36, No. 1-3, 2003, pp. 689-693.

[21]   J. A. Chaker, K. Dahmouche, C. V. Santilli, S. H. Pulcinelli, V. Briois and P. Judeinstein, “Structure and Electrical Properties of Potassium-Doped Siloxane-Poly(Oxypropylene) Ormolytes,” Journal of Sol-Gel Science and Technology, Vol. 26, No. 1-3, 2003, pp. 1075-1080.

[22]   L. A. Chiavacci, K. Dahmouche, N. J. O Silva, L. D. Carlos, V. S. Amaral, V. Z. Bermudez, S. H. Pulcineli, C. V. Santilli, V. Briois and A. F. Craievich, “Effect of Presence of an Acid Catalyst on Structure and Properties of Iron-Doped Siloxane-Polyoxyethylene Nanocomposites Prepared by Sol-Gel,” Journal of Non-Crystalline Solids 10, Vol. 345-346, 2004, pp. 585-590.

[23]   B. M. Novak, “Hybrid Nanocomposite Materials—Between Inorganic Glasses and Organic Polymers,” Advanced Materials, Vol. 5, No. 6, 2004, pp. 422-433.

[24]   C. Sanchez, F. Ribot and B. Lebeau, “Molecular Design of Hybrid Organic-Inorganic Nanocomposites Synthesized via Sol-Gel Chemistry,” Journal of Materials Chemistry, Vol. 9, 1999, pp. 35-44.

[25]   “Sol-Gel Optics, Series I to VIII, Proc. SPIE,” In: J. D. Mackenzie, D. Stauffer, A. Coniglio and M Adam, Eds., Advances in Polymer Science, Vol. 44, 1992, pp. 103-158.

[26]   V. H. V. Sarmento, K. Dahmouche, S. H. Pulcinelli and C. V. Santilli, “Effect of Lithium Doping on the Evolution of Rheological and Structural Properties during Gelation of Siloxane-Poly(Oxypropylene) Nanocomposites,” Journal of Materials Chemistry, Vol. 15, 2005, pp. 3962-3972.

[27]   K. Dahmouche, P. H. De Souza, T. J. Bonagamba, H. Paneppucci, P. Judeinstein, S. H. Pulcinelli and C. V. Santilli, “Investigation of New Ion Conducting Ormolytes Silica-Polypropyleneglycol,” Journal of Sol-Gel Science and Technology, Vol. 13, No. 1-3, 1998, pp. 909-913.

[28]   K. Dahmouche, M. Atik, N. C. Mello, T. J. Bonagamba, H. Panepucci, P. Judeinstein and M. A. Aegerter, “New Li+ Ion-Conducting Ormolytes: Fundamental and Technological Applications,” Solar Energy Materials and Solar Cells, Vol. 54, No. 1, 1998, pp. 1-8.

[29]   V. Z. Bermudeza, L. D. Carlosb, M. C. Duartea, M. M. Silvac, C. J. R. Silvac, M. J. Smithc, M. Assuncao and L. Alcácerd, “A Novel Class of Luminescent Polymers Obtained by the Sol-Gel Approach,” Journal of Alloys and Compounds, Vol. 275-277, 1998, pp. 21-26.

[30]   L. A. Chiavaccia, K. Dahmouchea, N. J. O. Silvab, L. D. Carlosb, V. S. Amaralb, V. Z. Bermudezc, S. H. Pulcinellia, C. V. Santillia, V. Brioisd and A. F. Craievich, “Effect of Presence of an Acid Catalyst on Structure and Properties of Iron-Doped Siloxane-Polyoxyethylene Nanocomposites Prepared by Sol-Gel,” Journal of NonCrystalline Solids 10, Vol. 345-346, 2004, pp. 585-590.

[31]   V. H. V. Sarmento, K. Dahmouche, C. V. Santilli and S. H. Pulcinelli, “Gelation of Siloxane-Poly(Oxypropylene) Composites,” Journal of Non-Crystalline Solids, Vol. 304, No. 1-3, 2002, pp. 134-142.

[32]   M. Gradzielski, H. Hoffmann, P. Robisch, W. Ulbricht and B. Grüning, “The Aggregation Behaviour of Silicone Surfactants in Aqueous Solutions,” Tensile Surfactant Detergent, Vol. 27, No. 6, 1990, pp. 366-379.

[33]   C. S. S. R. Kumar and F. Mohammad, “Magnetic Nanomaterials for Hyperthermia-Based Therapy and Controlled Drug Delivery,” Advanced Drug Delivery Reviews, Vol. 63, No.9, 2011, pp. 789-808.

[34]   Y. H. Lien and T. M. Wu, “Preparation and Characterization of Thermosensitive Polymers Grafted Onto SilicaCoated Iron Oxide Nanoparticles,” Journal of Colloid and Interface Science, Vol. 326, No. 2, 2008, pp. 517-521.

[35]   D. H. Kim, D. E. Nikles and C. S. Brazel, “Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery,” Materials, Vol. 3, No. 7, 2010, pp. 4051-4065.

[36]   K. C. Souza, J. D. Ardisson and E. M. Sousa, “Study of Mesoporous Silica/Magnetite Systems in Drug Controlled Release,” Journal of Materials Science: Materials in Medicine, Vol. 20, No. 2, 2009, pp. 507-512.

[37]   F. H. Chen, Q. Gao and J. Z. Ni, “The Grafting and Release Behavior of Doxorubincin from Fe3O4/SiO2 CoreShell Structure Nanoparticles via an Acid Cleaving Amide Bond: The Potential for Magnetic Targeting Drug Delivery,” Nanotechnology, Vol. 19, No. 16, 2008, pp. 165103-165111.

[38]   K. C. Souza, G. Salazar-Alvarez, J. D. Ardisson, W. A. A. Macedo and E. M. B. Sousa, “Mesoporous Silica-Magnetite Nanocomposite Synthesized by Using a Neutral Surfactant,” Nanotechnology, Vol. 19, No. 18, 2008, pp. 185603-185609.