Back
 AM  Vol.2 No.2 , February 2011
Formulation of the Post-Newtonian Equations of Motion of the Restricted Three Body Problem
Abstract: In the present work the geodesic equation represents the equations of motion of the particles along the geodesics is derived. The deviation of the curved space-time metric tensor from that of the Minkowski tensor is considered as a perturbation. The quantities is expanded in powers of c-2. The equations of motion of the relativistic three body problem in the PN formalism are obtained.
Cite this paper: nullF. Abd El-Salam and S. El-Bar, "Formulation of the Post-Newtonian Equations of Motion of the Restricted Three Body Problem," Applied Mathematics, Vol. 2 No. 2, 2011, pp. 155-164. doi: 10.4236/am.2011.22018.
References

[1]   C. G. Jacobi, “Sur le Movement d’un Point et sur un cas Particulier du Probleme des trios Corps,” Compte Rendus de l’Académie des Sciences, Vol. 3, 1836, p. 59.

[2]   G. W. Hill, “Researches in the Lunar Theory,” American Journal of Mathematics, Vol. 1, No. 1, 1878, pp. 5-26. doi:10.2307/2369430

[3]   H. Poincaré, “Les Methodes Mouvelles de la Mecanique Celeste,” Vol. 3, Gauthier-Villars, Paris, 1892.

[4]   G. D. Birkhoff, “The Restricted Problem of Three Bodies,” Rendiconti del Circolo Matematico di Palermo, Vol. 39, 1915, pp. 265-334. doi:10.1007/BF03015982

[5]   L. Euler, “Theoria Motuum Lumae,” Typis Academiae Imperialis Scientiarum, Petropoli, 1772.

[6]   E. Krefetz, “Restricted Three-Body Problem in the Post-Newtonian Approximation,” Astronomical Journal, Vol. 72, 1967, p. 471. doi:10.1086/110252

[7]   G. Contopoulos, “In Memoriam D. Eginitis,” D. Kotsakis, Ed., Athens, 1976, p. 159.

[8]   S. Weinberg, “Gravitation and Cosmology Principles and Applications of the General Theory of Relativity,” Chapter 9, John Wiley & Sons, New York, 1972.

[9]   M. H. Soffel, “Relativity in Astrometry, Celestial Mechanics and Geodesy,” Springer-Verlag, Berlin, 1989, p. 173.

[10]   V. A. Brumberg, “Relativistic Celestial Mechanics,” Nauka Press (Science), Moscow, 1972.

[11]   V. A. Brumberg, “Essential Relativistic Celestial Mechanics,” Adam Hilger, Ltd., New York, 1991.

[12]   K. B. Bhatnagar and P. P. Hallan, “Existence and Stability of L4,5 in the Relativistic Restricted Three Body Problem,” Celestial Mechanics, Vol. 69, No. 3, 1998, pp. 271-281.

[13]   F. W. Lucas, “Chaotic Amplification in the Relativistic Restricted Three-Body Problem,” Verlag der Zeitschrift für Naturforschung, Tübingen, Vol. 58a, No. 1, 2003, pp. 13-22.

[14]   C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” Freeman and Company, San Francisco, 1973, p. 840.

[15]   J. Foster and J. D. Nightingale, “A Short Course in General Relativity,” Springer, New York, 1995, p. 147.

 
 
Top