CN  Vol.5 No.3 C , September 2013
Power Allocation in Primary User-Assisted Multi-Channel Cognitive Radio Networks
Abstract: This paper addresses power allocation problem for spectrum sharing multi-band cognitive radio networks, where the primary user (PU) allows secondary users (SUs) to transmit simultaneously with it by coding SU's signal together with its own signal. The PU acts as the relay for the SUs and sells its transmit power to the SUs to increase its benefit, and the SUs bid for the PU's transmit power for maximizing their utilities. We propose a power allocation scheme based on traditional ascending clock auction, in which the SUs iteratively submit the optimal power demand to the PU according to the PU's announced price, and the PU updates that price based on all SUs' total power demands. Then we mathematically prove the convergence property of the proposed auction algorithm (i.e., the auction algorithm converges in a finite number of clocks), and show that the proposed power auction algorithm can maximize the social welfare. Finally, the performance of the proposed scheme is verified by the simulation results.
Cite this paper: Wu, Q. , Zou, J. and Zhu, K. (2013) Power Allocation in Primary User-Assisted Multi-Channel Cognitive Radio Networks. Communications and Network, 5, 238-244. doi: 10.4236/cn.2013.53B2044.

[1]   FCC, “Spectrum policy task force report ET Docket, Tech. Rep. 02-155,” FCC, Tech. Rep., Nov. 2002.

[2]   J. Mitola and G. Q. Maguire, “Cognitive Radio: Making Software Radios More Personal,” IEEE Personal Communications, Vol. 6, No. 4, 1999, pp. 13-18. doi:10.1109/98.788210

[3]   S. Haykin, “Cognitive Radio: Brain-empowered Wireless Communications,” IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, 2005, pp. 201-220. doi:10.1109/JSAC.2004.839380

[4]   N. Devroye, P. Mitran and V. Tarokh, “Achievable Rates in Cognitive Radio Channels,” IEEE Transactions Information Theory, Vol. 52, No. 5, 2006, pp. 1813-1827. doi:10.1109/TIT.2006.872971

[5]   S. K. Jayaweera and M. Bkassiny, “Asymmetric Cooperative Communications Based Spectrum Leasing via Auctions in Cognitive Radio Networks,” IEEE Trans. Wireless Commun., Vol. 10, No. 8, 2011, pp. 2716-2724. doi:10.1109/TWC.2011.061311.102044

[6]   P. Cheng, A. Guo, Y. Xu, X. Wang and X. Gao, “A Game Approach for Dynamic Resource Allocation in Cognitive Radio Networks,” Wireless Communications and Signal Processing (WCSP), 2010, pp. 1-6.

[7]   J. N. Laneman, D. N. C. Tse and G. W. Wornell, “Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior,” IEEE Transactions Information Theory, Vol. 50, No. 12, 2004, pp. 3062-3080. doi:10.1109/TIT.2004.838089

[8]   Y. Wu, P. A. Chou and S. Y. Kung, “Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast,” MSR-TR-2004, Vol. 78, 2005.

[9]   J. Zou and H. Xu, “Auction-Based Power Allocation for Multiuser Two-Way Relaying Networks,” IEEE Transactions Wireless Communications, Vol. 12, No. 1, 2013, pp. 31-39. doi:10.1109/TWC.2012.113012.111725

[10]   K. B. Letaief and W. Zhang, “Cooperative Communications for Cognitive Radio Networks,” Proceedings of the IEEE, Vol. 97, No. 5, 2009, pp. 878-893. doi:10.1109/JPROC.2009.2015716

[11]   A. Ghasemi and E. S. Sousa, “Fundamental Limits of Spectrum-Sharing in Fading Environments,” IEEE Transactions Wireless Communications, Vol. 6, No. 2, 2007, pp. 649-658. doi:10.1109/TWC.2007.05447

[12]   Y. Chen, G. Yu, Z. Zhang, H. hwa Chen and P. Qiu, “On Cognitive Radio Networks with Opportunistic Power Control Strategies in Fading Channels,” IEEE Transactions Wireless Communications, Vol. 7, No. 7, 2008, pp. 2752-2761. doi:10.1109/TWC.2008.070145

[13]   S. Stotas and A. Nallanathan, “Optimal Sensing Time and Power Allocation in Multiband Cognitive Radio Networks,” IEEE Transactions Wireless Communications, Vol. 59, No. 1, 2011, pp. 226-235. doi:10.1109/TCOMM.2010.110310.090473

[14]   C. Yang, J. Li and Z. Tian, “Optimal Power Control for Cognitive Radio Networks under Coupled Interference Constraints: A Cooperative Game-Theoretic Perspective,” IEEE Transactions Vehicular Technology, Special Issue on Cognitive Radio, 2010.

[15]   P. Zhou, W. Yuan, W. Liu and W. Cheng, “Joint Power and Rate Control in Cognitive Radio Networks: A Game-Theoretical Approach,” in Proc. IEEE International Conference on Communications, 2008, pp. 3296-3301.

[16]   Y. Chen, Y. Wu, B. Wang and K. Liu, “Spectrum Auction Games for Multimedia Streaming over Cognitive Radio Networks,” IEEE Transactions on Communications, Vol. 58, No. 8, 2010, pp. 2381-2390. doi:10.1109/TCOMM.2010.08.090528

[17]   J. Zou, H. Xiong, D. Wang and C. W. Chen, “Optimal Power Allocation for Hybrid Overlay/Underlay Spectrum Sharing in Multiband Cognitive Radio Networks,” IEEE Transac-tions Vehicular Technology, Vol. 62, No. 4, 2013, pp. 1827-1837. doi:10.1109/TVT.2012.2235152

[18]   S. Sharma, Y. Shi, Y. T. Hou and S. Kompella, “Is Network Coding Always Good for Cooperative Communications,” IEEE INFOCOM, 2010, pp. 1-9.

[19]   L. M. Ausubel, “An Efficient Ascending-bid Auction for Multiple Objects,” American Economic Review, Vol. 94, 2004, pp. 1452-1475. doi:10.1257/0002828043052330

[20]   S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2003.