IJOC  Vol.3 No.3 A , November 2013
Improvement on the Synthesis of Primary Amino Sugar Derivatives via N-Benzyl Intermediates
ABSTRACT
Primary tosylates 1a-d were converted to the corresponding amino species 3a-d. Benzylamine was proved effective for the substitution of tosylates, using acetonitrile (MeCN) as the solvent of choice and citric acid to remove excess of the reagent from crude products 2a-d. Debenzylation was carried out at circa (ca.) atmospheric pressure of hydrogen gas in the presence of acetic acid (AcOH). The method was also demonstrated in a demo batch experiment for the synthesis of compound 3a on a 50 g scale of 1a.

Cite this paper
M. Corsi, M. Bonanni, G. Catelani, F. D’Andrea, T. Gragnani and R. Bianchini, "Improvement on the Synthesis of Primary Amino Sugar Derivatives via N-Benzyl Intermediates," International Journal of Organic Chemistry, Vol. 3 No. 3, 2013, pp. 41-48. doi: 10.4236/ijoc.2013.33A005.
References
[1]   S. F. Kuan, J. C. Byrd, C. Basbaum and Y. S. Kim, “Inhibition of Mucin Glycosylation by Aryl-N-Acetyl-α-Galactosaminides in Human Colon Cancer Cell,” Journal of Biological Chemistry, Vol. 264, No. 32, 1989, pp. 19271-19277.

[2]   D. Kahne, C. Leimkuhler, W. Lu and C. Walsh, “Glycopeptide and Lipoglycopeptide Antibiotics,” Chemical Reviews, Vol. 105, No. 2, 2005, pp. 425-448.
http://dx.doi.org/10.1021/cr030103a

[3]   B. Lindberg, “Components of Bacterial Polysaccharides,” Advances in Carbohydrate Chemistry and Biochemistry, Vol. 48, 1990, pp. 279-318.
http://dx.doi.org/10.1016/S0065-2318(08)60033-5

[4]   B. R. Griffith, C. Krepel, X. Fu, S. Blanchard, A. Ahmed, C. E. Edmiston and J. S. Thorson, “Model for Antibiotic Optimization via Neoglycosylation:Synthesis of Liponeoglycopeptides Active against VRE,” Journal of the American Chemical Society, Vol. 129, No. 26, 2007, pp. 8150-8155. http://dx.doi.org/10.1021/ja068602r

[5]   H. Liu, X. Liang, H. Sohoel, A. Bülow and M. Bols, “Noeuromycin, A Glycosyl Cation Mimic that Strongly Inhibits Glycosidases,” Ibid, Vol. 123, No. 21, 2001, pp. 8150-8155. http://dx.doi.org/10.1021/ja010240u

[6]   Q. Wang, Z. Zhou, S. Tang and Z. Guo, “CarbohydrateMonophosphoryl Lipid A Conjugates Are Fully Synthetic Self-Adjuvanting Cancer Vaccines Eliciting Robust Immune Responses in the Mouse,” ACS Chemical Biology, Vol. 7, No. 1, 2012, pp. 235-240.
http://dx.doi.org/10.1021/cb200358r

[7]   R. Bianchini, M. Rolla, J. Isaad, G. Catelani, L. Guazzelli, M. Corsi and M. Bonanni, “Efficient Double Glycoconjugation to Naturalize High Molecular Weight Disperse Dyes,” Carbohydrate Research, Vol. 356, 2012, pp. 104-109. http://dx.doi.org/10.1016/j.carres.2011.10.036

[8]   R. Bianchini, M. Bonanni, M. Corsi and A. S. Infantino, “Viable and Straightforward Approach to the Preparation of Water Soluble Pyrazol-5-One Derivatives through Glycoconjugation,” Tetrahedron, Vol. 68, No. 41, 2012, pp. 8636-8644. http://dx.doi.org/10.1016/j.tet.2012.07.074

[9]   G. Fontana, M. Abbate, G. Casella, C. Pellerito, A. Longo and F. Ferrante, “Synthesis, Chemical Characterization and Preliminary in Vitro Antitumor Activity Evaluation of New Rruthenium(II) Complexes with Sugar Derivatives,” Polyhedron, Vol. 30, No. 10, 2011, pp. 1671-1679.
http://dx.doi.org/10.1016/j.poly.2011.03.046

[10]   G. Bartalucci, R. Bianchini, G. Catelani, F. D’Andrea and L. Guazzelli, “Naturalised Dyes: A Simple Straightforward Synthetic Route to a New Class of Dyes-Glycoazodyes (GADs),” European Journal of Organic Chemistry, Vol. 2007, No. 4, 2007, pp. 588-595.
http://dx.doi.org/10.1002/ejoc.200600686

[11]   J. Isaad, M. Rolla and R. Bianchini, “Synthesis of WaterSoluble Large Naturalised Dyes Through Double Glycoconjugation,” European Journal of Organic Chemistry, Vol. 2009, No. 17, 2009, pp. 2748-2764.
http://dx.doi.org/10.1002/ejoc.200801302

[12]   J. Yang, X. Fu, Q. Jia, J. Shen, J. B. Biggins, J. Jiang, J. Zhao, J. J. Schmidt, P. G. Wang and J. S. Thorson, “Studies on the Substrate Specificity of Escherichia coli Galactokinase,” Organic Letters, Vol. 5, No. 13, 2003, pp. 2223-2226. http://dx.doi.org/10.1021/ol034642d

[13]   J. A. F. Joosten, B. Evers, R. P. Summeren, J. P. Kamerling and J. F. G. Vliegenthart, “Synthesis of β-d-Galp-(1↔4)-β-d-GlcpNAc-(1↔2)-α-d-Manp-(1↔O)(CH2)7CH3 Mimics to Explore the Substrate Specificity of Sialyltransferases and trans-Sialidases,” European Journal of Organic Chemistry, Vol. 2003, No. 18, 2003, pp. 3569 3586. http://dx.doi.org/10.1002/ejoc.200300293

[14]   J. P. Scott, M. Alam, N. Bremeyer, A. Goodyear, T. Lam, R. D. Wilson and G. Zhou, “Mitsunobu Inversion of a Secondary Alcohol with Diphenylphosphoryl azide. Application to the Enantioselective Multikilogram Synthesis of a HCV Polymerase Inhibitor,” Organic Process Research & Development, Vol. 15, No. 5, 2011, pp. 1116-1123. http://dx.doi.org/10.1021/op200002u

[15]   P. N. Rylander, “Catalytic Hydrogenation in Organic Synthesis,” Academic Press, New York, 1979.

[16]   K. Harata, K. Y. Takenaka and N. Yoshida, “Crystal Structures of 6-Deoxy-6-Monosubstituted β-Cyclodextrins. Substituent-Regulated One-Dimensional Arrays of Macrocycles,” Journal of the Chemical Society, Perkin Transactions 2, Vol. 2001, No. 9, pp. 1667-1673.
http://dx.doi.org/10.1039/b101521o

[17]   F. Hacket, S. Simova and H.-J. Schneider, “The Complexation of Peptides by Aminocyclodextrins,” Journal of Physical Organic Chemistry, Vol. 14, No. 3, 2001, pp. 159 170. http://dx.doi.org/10.1002/poc.348

[18]   Y. Liu, C.-C. You, S.-Z. Kang, C. Wang, F. Chen and X.-W. He, “Synthesis of Novel β Cyclodextrin and Calixarene Derivatives and Their Use in Gas Sensing on the Basis of Molecular Recognition,” European Journal of Organic Chemistry, Vol. 2002, No. 4, pp. 607-613.
http://dx.doi.org/10.1002/1099-0690(200202)2002:4<607::AID-EJOC607>3.0.CO;2-I

[19]   R. Kaliappan and V. Ramamurthy, “Chiral Photochem.istry within Natural and Functionalized Cyclodextrins: Chiral Induction in Photocyclization Products from Carbonyl Compounds,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 207, No. 1, 2009, pp. 144-152. http://dx.doi.org/10.1016/j.jphotochem.2009.03.004

[20]   Y. Wang, T. S. Chung and H. Wang, “Polyamide-Imide Membranes with Surface Iimmobilized Cyclodextrin for Butanol Isomer Separation via Pervaporation,” AIChE Journal, Vol. 57, No. 6, 2011, pp. 1470-1484.
http://dx.doi.org/10.1002/aic.12360

[21]   M. Zengerle, F. Brandhuber, C. Schneider, F. Worek, G. Reiter and S. Kubik, “Highly Efficient Cyclosarin Degradation Mediated by a β-Cyclodextrin Derivative Containing an Oxime Derived Substituent,” Beilstein Journal of Organic Chemistry, Vol. 7, 2011, pp. 1543 1554.
http://dx.doi.org/10.3762/bjoc.7.182

[22]   H. Yamamura, K. Suzuki, K. Uchibori, A. Miyagawa, M. Kawai, C. Ohmizob and T. Katsub, “Mimicking an Antimicrobial Peptide Polymyxin B by Use of Cyclodextrin,” Chemical Communications, Vol. 48, No. 6, 2012, pp. 892-894. http://dx.doi.org/10.1039/c1cc16369h

[23]   T. Michaud, J. Chanet-Ray, S. Chou and J. Gelas, “Synthesis of New Enantiomerically Pure Polyhydroxylated Azetidines from Monosaccharides,” Carbohydrate Research, Vol. 299, No. 1, 1997, pp. 253-269.
http://dx.doi.org/10.1016/S0008-6215(97)00141-9

[24]   J. Cai, B. E. Davison, C. R. Ganellin, S. Thaisrivongs and K. S. Wibley, “Potential HIV Protease Inhibitors: Preparation of di-N-Alkylated 2-, 6-, and 2,6-Aminodeoxy-Derivatives of d-Glucose by Direct Displacement and by a Novel Reductive-Alkylation Procedure,” Ibid, Vol. 300, No. 2, 1997, pp. 109-117.
http://dx.doi.org/10.1016/S0008-6215(97)00039-6

[25]   G. Catelani, A. Corsaro, F. D’Andrea, M. Mariani, V. Pistara and E. Vittorino, “Convenient Preparation of l-Arabino-Hexos-5-ulose Derivatives from Lactose,” Ibid, Vol. 388, No. 22, 2003, pp. 2349-2358.
http://dx.doi.org/10.1016/j.carres.2003.08.001

[26]   S. B. Ferreira, A. C. R. Sodero, M. F. C. Cardoso, E. S. Lima, C. R. Kaiser, F. P. Jr. Silva and V. F. Ferreira, “Synthesis, Biological Activity, and Molecular Modeling Studies of 1H-1,2,3-Triazole Derivatives of Carbohydrates as α-Glucosidases Inhibitors,” Journal of Medicinal Chemistry, Vol. 53, No. 6, 2010, pp. 2364 2375.
http://dx.doi.org/10.1021/jm901265h

[27]   J.-C. Lee, S.-W. Chang, C.-C. Liao, F.-C. Chi, C.-S. Chen, Y.-S. Wen, C.-C. Wang, S. S. Kulkarni, R. Puranik, Y.-H. Liu and S.-C. Hung, “From d-Glucose to Biologically Potent l Hexose Derivatives: Synthesis of α-l-Iduronidase Fluorogenic Detector and the Disaccharide Moieties of Bleomycin A2 and Heparan Sulfate,” Chemistry: A European Journal, Vol. 10, No. 2, 2004, pp. 399-415.
http://dx.doi.org/10.1002/chem.200305096

[28]   T. Yoshino, G. Reuter, S. Kelm and R. Schauer, “Facile Synthesis of 2’-Substituted Lactoses,” Glycoconjugate Journal, Vol. 3, No. 1, 1986, pp. 7-14.
http://dx.doi.org/10.1007/BF01108607

[29]   G. Attolino, G. Catelani and F. D’Andrea, “Regiospecific Synthesis of 4-Deoxy-d-threo-Hex-3-enopyranosides by Simultaneous Activation–Elimination of the Talopyranoside Axial 4-OH with the NaH/Im2SO2 System: Manifestation of the Stereoelectronic Effect,” European Journal of Organic Chemistry, Vol. 2006, No. 23, pp. 5279-5292. http://dx.doi.org/10.1002/ejoc.200600526

[30]   G. W. Kabalka, M. Varma, R. S. Varma, P. C. Srivastava and F. F. Jr. Knapp, “The Tosylation of Alcohols,” Journal of Organic Chemistry, Vol. 51, No. 12, 1986, p. 2386. http://dx.doi.org/10.1021/jo00362a044

[31]   P. J. Kocieński, “Protecting Groups,” 3rd Edition, Thieme, Stuttgart, 2005, pp. 120-132.

[32]   B. Streicher and B. Wünsch, “Synthesis of Amino-Substituted Hexoand Heptopyranoses from-d-Galactose,” Carbohydrate Research, Vol. 338, No. 22, 2003, pp. 2375-2385. http://dx.doi.org/10.1016/S0008-6215(03)00382-3

[33]   B. Coxon, “Studies of 15N-Labeled Amino Sugars1. The Synthesis and Mass Spectrometry of Derivatives of 6-Amino-6-deoxy-d-Glucose-6-15N,” Ibid, Vol. 19, No. 2, 1971, pp. 197-210.
http://dx.doi.org/10.1016/S0008-6215(00)81620-1

[34]   W. C. Still, M. Kahn and A. Mitra, “Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution,” Journal of Organic Chemistry, Vol. 43, No. 14, 1978, pp. 2923-2925.
http://dx.doi.org/10.1021/jo00408a041

 
 
Top