Finite-Difference Solution of the Helmholtz Equation Based on Two Domain Decomposition Algorithms

Show more

References

[1] A. Bayliss, C. I. Goldstein and E. Turkel, “The Numerical Solution of the Helmholtz Equation for Wave Propagation Problems in Underwater Acoustics,” Computers and Mathematics with Applications, Vol. 11, No. 7-8, 1985, pp. 655-665.
http://dx.doi.org/10.1016/0898-1221(85)90162-2

[2] R. E. Plexxis, “A Helmholtz Iterative Solver for 3D Seismic-Imaging Problems,” Geophysics, Vol. 72, No. 5, 2007, pp. SM185-SM197.
http://dx.doi.org/10.1190/1.2738849

[3] A. Bayliss, C. I. Goldstein and E. Turkel, “An Iterative Method for the Helmholtz Equation,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp.443-457.
http://dx.doi.org/10.1016/0021-9991(83)90139-0

[4] C. W. Oosterlee and T. Washio, “Iterative Solution of the Helmholtz Equation by a Second Order Method,” SIAM Journal on Matrix Analysis and Applications, Vol. 21, No. 1, 1999, pp. 209-229.
http://dx.doi.org/10.1137/S0895479897316588

[5] Y. A. Erlangga, “Advances in Iterative Methods and Preconditioners for the Helmholtz Equation,” Archives of Computational Methods in Engineering, Vol. 15, No. 1, 2008, pp. 37-66.
http://dx.doi.org/10.1007/s11831-007-9013-7

[6] R.-E. Plessix and W. A. Mulder, “Separation of Variables as a Preconditioner for an Iterative Helmholtz Solver,” Applied Numerical Mathematics, Vol. 44, No. 3, 2003, pp. 385-400.
http://dx.doi.org/10.1016/S0168-9274(02)00165-4

[7] M. M. M. Made, “Incomplete Factorization-Based Preconditionings for Solving the Helmholtz Equation,” International Journal for Numerical Methods in Engineering, Vol. 50, No. 5, 2001, pp. 1077-1101.
http://dx.doi.org/10.1002/1097-0207(20010220)50:5<1077::AID-NME65>3.0.CO;2-P

[8] N. Umetani, S. P. Maclachlan and C. W. Oosterlee, “A Multigrid-Based Shifted Laplacian Preconditioner for a Fourth-Order Helmholtz Discretization,” Numerical Linear Algebra with Applications, Vol. 16, No. 8, 2009, pp. 603-626. http://dx.doi.org/10.1002/nla.634

[9] T. Airaksinen, E. Heikkola, A. Pennanen and J. Toivanen, “An Algebraic Multigrid Based Shifted-Laplacian Preconditioner for the Helmholtz Equation,” Journal of Computational Physics, Vol. 226, No. 1, 2007, pp. 1196- 1210. http://dx.doi.org/10.1016/j.jcp.2007.05.013

[10] Y. A. Erlangga, C. Vuik and C. W. Oosterlee, “On a Class of Preconditioners for Solving the Helmholtz Equation,” Applied Numerical Mathematics, Vol. 50, No. 3-4, 2004, pp. 409-425.
http://dx.doi.org/10.1016/j.apnum.2004.01.009

[11] Y. A. Erlangga, C. W. Oosterlee and C. Vuik, “A Novel Multigrid Based Preconditioner for Heterogeneous Helmholtz Problems,” SIAM Journal on Scientific Computing, Vol. 27, No. 4, 2006, pp. 1471-1492.
http://dx.doi.org/10.1137/040615195

[12] T. F. Chan and T. P. Mathew, “Domain Decomposition Algorithms,” Acta Numerica, Vol. 3, 1994, pp. 61-143.
http://dx.doi.org/10.1017/S0962492900002427

[13] J. D. Benamou and B. Despres, “A Domain Decomposition Method for the Helmholtz Equation and Related Optimal Control Problems,” Journal of Computational Physics, Vol. 136, No. 1, 1997, pp. 62-68.
http://dx.doi.org/10.1006/jcph.1997.5742

[14] B. Smith, P. Bjorstad and W. Grop, “Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations,” Cambridge University Press, Cambridge, 1996.

[15] A. Quarteroni and A. Valli, “Domain Decomposition Methods for Partial Differential Equations,” Oxford Science Publications, Oxford, 1999.

[16] A. Tosseli and O. Widlund, “Domain Decomposition Methods—Algorithms and Theory,” Springer, Berlin, 2005.

[17] J. Xu, “Iterative Methods by Space Decomposition and Subspace Correction,” SIAM Review, Vol. 34, No. 4, 1992, pp. 581-613. http://dx.doi.org/10.1137/1034116

[18] J. Xu and J. Zou, “Some Nonoverlapping Domain Decomposition Methods,” SIAM Review, Vol. 40, No. 4, 1998, pp. 857-914.
http://dx.doi.org/10.1137/S0036144596306800

[19] S. Kim, “Domain Decomposition Iterative Procedures for Solving Scalar Waves in the Frequency Domain,” Numerische Mathematik, Vol. 79, No. 2, 1998, pp. 231-259.
http://dx.doi.org/10.1007/s002110050339

[20] S. Larsson, “A Domain Decomposition Method for the Helmholtz Equation in a Multilayer Domain,” SIAM Journal on Scientific Computing, Vol. 20, No. 5, 1999, pp. 1713-1731.
http://dx.doi.org/10.1137/S1064827597325323

[21] F. Magoulès, F. X. Roux and S. Salmon, “Optimal Discrete Transmission Conditions for a Nonoverlapping Domain Decomposition Method for the Helmholtz Equation,” SIAM Journal on Scientific Computing, Vol. 25, No. 5, 2004, pp. 1497-1515.
http://dx.doi.org/10.1137/S1064827502415351

[22] E. Heikkola, T. Rossi and J. Toivaned, “A Parallel Fictitious Domain Method for the Three-Dimensional Helmholtz Equation,” SIAM Journal on Scientific Computing, Vol. 24, No. 5, 2003, pp. 1567-1588.
http://dx.doi.org/10.1137/S1064827500370305

[23] R. Clayton and B. Engquist, “Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations,” Bulletin of the Seismological Society of America, Vol. 67, No. 6, 1977, pp. 1529-1540.

[24] J. P. Berenger, “A Perfectly Matched Layer for Absorbing of Electromagnetic Waves,” Journal of Computational Physics, Vol. 114, No. 2, 1994, pp. 185-200.
http://dx.doi.org/10.1006/jcph.1994.1159

[25] H. A. van der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems”, SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 2, 1992, pp. 631- 644. http://dx.doi.org/10.1137/0913035

[26] Y. Saad, “Iterative Methods for Sparse Linear Systems,” 2nd Edition, SIAM, Philadephia, PA, 2003.
http://dx.doi.org/10.1137/1.9780898718003

[27] W. Zhang, “Imaging Methods and Computations Based on the Wave Equation,” Science Press, Beijing, 2009.