ANP  Vol.2 No.4 , November 2013
Study of Nanomaterials under High Pressure
Author(s) Madan Singh*, Moruti Kao
ABSTRACT

A simple theory is proposed to predict the effect of pressure for study of volume expansion of nanomaterials. Different possible forms of equation of state are discussed with their correlations. Only two input parameters, namely, the bulk modulus and its first pressure derivative, are required for calculations. We have considered a wide variety of nanomaterials, such as, CdSe (4.2 nm), Fe-Cu (14 nm), y-Al2O3 (67 nm), y-Al2O3 (37 nm), Ni (20 nm), Fe (10 nm), CeO2 (cubic Fluorite phase) (15 nm), CeO2 (Orthorhombic Phase) (15 nm), CuO (24 nm) and TiO2 (rutile phase) (10 nm) to analyze the effect of pressure on them. The theoretical predictions for the given nanomaterials agree with the experimental results and the other theoretical models.


Cite this paper
Singh, M. and Kao, M. (2013) Study of Nanomaterials under High Pressure. Advances in Nanoparticles, 2, 350-357. doi: 10.4236/anp.2013.24048.
References
[1]   H. Gleiter, “Nanostructured Materials, Basic Concept and Microstructure,” Acta Materialia, Vol. 48, No. 1, 2000, pp. 6243-6248.

[2]   Q. Jiang, L. H. Liang and D. S. Zhao, “Lattice Contraction and Surface Stress of Fcc Nanocrystals,” Journal of Physical Chemistry B, Vol. 105, No. 27, 2001, pp. 62756277. http://dx.doi.org/10.1021/jp010995n

[3]   F. H. Streitz, K. Sieradzki and R. C. Cammarata, “Elastic Properties of Thin Fcc Films,” Physical Review B, Vol. 41, No. 17, 1990, pp. 12285-12287.
http://dx.doi.org/10.1103/PhysRevB.41.12285

[4]   L. H. Liang, J. C. Li and Q. Jiang, “Size-Dependent Elastic Modulus of Cu and Au Thin Films,” Solid State Communications, Vol. 121, No. 8, 2002, pp. 453-455.
http://dx.doi.org/10.1016/S0038-1098(02)00026-1

[5]   J. H. Zhang, Q. A. Huang, H. Yu and J. Wang, “The Influence of Surface Effects on Size-Dependent Mechanical Properties of Silicon Nanobeams at Finite Temperature,” Journal of Physics D, Vol. 42, No. 4, 2009, Article ID: 045409.

[6]   M. Fujii, T. Nagareda, S. Hayashi and K. Yamamoto, “Low Frequency Raman Scattering from Small Silver Particles Embedded in SiO2 Film,” Physical Review B, Vol. 44, No. 12, 1991, pp. 6243-6248.
http://dx.doi.org/10.1103/PhysRevB.44.6243

[7]   W. F. Zhang, Y. He, M. S. Zhang, Z. Yin and Q. Chen, “Raman Scattering Study on Anatase TiO2 Nanocrystals,” Journal of Physics D, Vol. 33, No. 8, 2000, pp. 912.
http://dx.doi.org/10.1088/0022-3727/33/8/305

[8]   H. Liang and B. Li, “Size-Dependent Thermal Conductivity of Nanoscale Semiconducting Systems,” Physical Review B, Vol. 73, No. 15, 2006, Article ID: 153303.

[9]   H. W. Kroto, J. R. Heath, S. C. O. Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, Vol. 318, No. 6042, 1985, pp. 162-163.
http://dx.doi.org/10.1038/318162a0

[10]   A. S. Miguel, “Nanomaterials under High Pressure,” Chemical Society Reviews, Vol. 35, No. 10, 2006, pp. 876-889. http://dx.doi.org/10.1039/b517779k

[11]   M. Singh, P. Singh, B. Gupta and M. Kumar, “Temperature and Pressure Dependence of Elastic Constants,” High Temperature-High Pressures, Vol. 33, No. 2, 2001, pp. 199-206. http://dx.doi.org/10.1068/htjr012

[12]   S. Karmakar, S. M. Sharma, P. V. Teredesai and A. K. Sood, “Pressure-Induced Phase Transitions in Iron-Filled Carbon Nanotubes: X-Ray Diffraction Studies,” Physical Review B, Vol. 69, No. 16, 2004, Article ID: 165414.

[13]   B. Kiefer, S. R. Shieh and T. S. Duffy, “Strength, Elasticity, and Equation of State of the Nanocrystalline Cubic Silicon Nitride γ-Si3N4 to 68 GPa,” Physical Review B, Vol. 72, No. 1, 2005, Article ID: 014102.
http://dx.doi.org/10.1103/PhysRevB.72.014102

[14]   S. H. Tolbert and A. P. Alivisatos, “The Wurtzite to Rock Salt Structural Transformation in CdSe Nanocrystals under High Pressure,” The Journal of Chemical Physics, Vol. 102, No. 11, 1995, pp. 4642-4656.
http://dx.doi.org/10.1063/1.469512

[15]   J. Z. Jiang, J. S. Olsen, L. Gerward and S. Morup, “Compressibility of Nanostructured Fe-Cu Materials Prepared by Mechanical Milling,” Nanostructured Materials, Vol. 12, No. 5-8, 1999, pp. 847-850.
http://dx.doi.org/10.1016/S0965-9773(99)00249-4

[16]   B. Chen, D. Penwell and M. B. Kruger, “The Compressibility of Nanocrystalline Nickel,” Solid State Communications, Vol. 115, No. 4, 2000, pp. 191-194.
http://dx.doi.org/10.1016/S0038-1098(00)00160-5

[17]   J. Zhao, L. Guo, J. Liu, Y. Yang, et al., “High Bulk Modulus of Nanocrystal γ-Fe2O3 with Chemical Dodecyl Benzene Sulfonic Decoration under High Pressure,” Chinese Physics Letters, Vol. 17, No. 2, 2000, p. 126.
http://dx.doi.org/10.1088/0256-307X/17/2/018

[18]   B. Chen, D. Penwell, M. B. Kruger, A. F. Yue and B. Fultz, “Nanocrystalline Iron at High Pressure,” Journal of Applied Physics, Vol. 89, No. 9, 2001, p. 4794.
http://dx.doi.org/10.1063/1.1357780

[19]   O. L. Anderson, “Equation of State for Geophysics and Ceramic Sciences,” Oxford University Press, Oxford, 1995.

[20]   P. Vinet, J. Ferrente, J. R. Smith and J. H. Rose, “A Universal Equation of State for Solids,” Journal of Physics C: Solid State Physics, Vol. 19, No. 20, 1986, p. L467.

 
 
Top