AM  Vol.4 No.11 , November 2013
Cubic Spline Approximation for Weakly Singular Integral Models
ABSTRACT
In this paper we propose a numerical collocation method to approximate the solution of linear integral mixed Volterra Fredholm equations of the second kind, with particular weakly singular kernels. The collocation method is based on the class of quasi-interpolatory splines on locally uniform mesh. These approximating functions are particularly suitable to tackle on problems with weakly regular solutions. We analyse the convergence problems and we present some numerical results and comparisons to confirm the efficiency of the numerical model.

Cite this paper
Caliò, F. and Marchetti, E. (2013) Cubic Spline Approximation for Weakly Singular Integral Models. Applied Mathematics, 4, 1563-1567. doi: 10.4236/am.2013.411211.
References
[1]   T. N. E. Greville, “Spline Functions, Interpolation and Numerical Quadrature,” In: Mathematical Methods for Digital Computers, Wiley, New York, 1967, pp. 156-168.

[2]   C. Dagnino, “Product Integration of Singular Integrals Based on Cubic Spline Interpolation at Equally Spaced Nodes,” Numerical Mathematics, Vol. 57, No. 1, 1990, pp. 97-104.
http://dx.doi.org/10.1007/BF01386400

[3]   A. P. Orsi, “Spline Approximation for Cauchy Principal Value Integrals,” JCAM, Vol. 30, No. 1, 1990, pp. 191201.

[4]   P. Rabinowitz, “Numerical Integration Based on Approximating Splines,” Journal of Computational and Applied Mathematics, Vol. 33, No. 1, 1990, pp. 73-83.
http://dx.doi.org/10.1016/0377-0427(90)90257-Z

[5]   I. J. Schoenberg, “On Spline Functions,” Inequalities (Symposium at Write-Patterson Air Force Base), Academic Press, New York, 1967, pp. 255-291.

[6]   T. Lyche and L. L. Schumaker, “Local Spline Approximation Methods,” Journal of Approximation Theory, Vol. 15, No. 4, 1975, pp. 294-325.
http://dx.doi.org/10.1016/0021-9045(75)90091-X

[7]   C. Dagnino and P. Rabinowitz, “Product Integration of Singular Integrands Using Quasi-Interpolatory Splines,” Computers & Mathematics with Applications, Vol. 33, No. 1, 1997, pp. 59-67.
http://dx.doi.org/10.1016/S0898-1221(96)00219-2

[8]   C. Dagnino and E. Santi, “Quadrature Based on QuasiInterpolating Spline-Projectors for Product Singular Integration,” Babes-Bolyai, Mathematica, Vol. XLI, 1996, pp. 35-47.

[9]   F. Caliò, E. Marchetti and P. Rabinowitz, “On the Numerical Solution of the Generalized Prandtl Equation Using Variation-Diminishing Splines,” Journal of Computational and Applied Mathematics, Vol. 60, No. 3, 1995, pp. 297-307.
http://dx.doi.org/10.1016/0377-0427(94)00024-U

[10]   F. Caliò and E. Marchetti, “An Algorithm Based on q.i. Modified Splines for Singular Integral Models,” Computers & Mathematics with Applications, Vol. 41, No. 12, 2001, pp. 1579-1588.
http://dx.doi.org/10.1016/S0898-1221(01)00123-7

[11]   F. Caliò, M. V. Fernandéz Munoz and E. Marchetti, “Direct and Iterative Methods for the Numerical Solution of Mixed Integral Equations,” Applied Mathematics and Computation, Vol. 216, No. 12, 2010, pp. 3739-3746.
http://dx.doi.org/10.1016/j.amc.2010.05.032

[12]   F. Caliò, A. I. Garralda-Guillem, E. Marchetti and M. R. Galán, “About Some Numerical Approaches for Mixed Integral Equations,” Applied Mathematics and Computation, Vol. 219, No. 2, 2012, pp. 464-474.
http://dx.doi.org/10.1016/j.amc.2012.06.013

[13]   V. Demichelis, “Quasi-Interpolatory Splines Based on Schoenberg Points,” Mathematics of Computation, Vol. 65, No. 215, 1996, pp. 1235-1247.
http://dx.doi.org/10.1090/S0025-5718-96-00728-4

[14]   C. de Boor, “Spline Approximation by Quasi Interpolants,” Journal of Approximation Theory, Vol. 8, No. 1, 1973, pp. 19-45.
http://dx.doi.org/10.1016/0021-9045(73)90029-4

[15]   K. E. Atkinson, “The Numerical Solution of Integral Equations of the Second Kind,” Cambridge University Press, Cambridge, 1997.

[16]   C. Dagnino, V. Demichelis and E. Santi, “A Nodal Spline Collocation Method for Weakly Singular Volterra Integral Equations,” Babes-Bolyai, Mathematica, Vol. XLVIII, 2003, pp. 71-81.

 
 
Top