AM  Vol.4 No.11 , November 2013
Logistic Mapping-Based Complex Network Modeling
ABSTRACT

In this paper, a new topological approach for studying an integer sequence constructed from Logistic mapping is proposed. By evenly segmenting [0,1] into N non-overlapping subintervals which is marked as , representing the nodes identities, a network is constructed for analysis. Wherein the undirected edges symbolize their relation of adjacency in an integer sequence obtained from the Logistic mapping and the top integral function. By observation, we find that nodes’ degree changes with different values of  instead of the initial value—X0, and the degree distribution presents the characteristics of scale free network, presenting power law distribution. The results presented in this paper provide some insight into degree distribution of the network constructed from integer sequence that may help better understanding of the nature of Logistic mapping.


Cite this paper
Yu, X. , Jia, Z. and Jian, X. (2013) Logistic Mapping-Based Complex Network Modeling. Applied Mathematics, 4, 1158-1562. doi: 10.4236/am.2013.411210.
References
[1]   R. Albert and A.-L. Barabasi, “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics, Vol. 74, No. 1, 2002, pp. 47-97.
http://dx.doi.org/10.1103/RevModPhys.74.47

[2]   S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of Networks,” Advances in Physics, Vol. 51, No. 4, 2002, pp. 1079-1145.
http://dx.doi.org/10.1080/00018730110112519

[3]   M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review, Vol. 45, No. 2, 2003, pp. 167-224. http://dx.doi.org/10.1137/S003614450342480

[4]   R. Pastor-Satorras, A. Vazquez and A. Vespignani, “Dynamical and Correlation Properties of the Internet,” Physical Review Letters, Vol. 87, No. 25, 2001, pp. 1-4.
http://dx.doi.org/10.1103/PhysRevLett.87.258701

[5]   G. Bianconi and A. L. Barabasi, “Competition and Multiscaling in Evolving Networks,” Europhysics Letters, Vol. 54, No. 4, 2001, pp. 436-442.
http://dx.doi.org/10.1209/epl/i2001-00260-6

[6]   F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley and Y. Aberg, “The Web of Human Sexual Contacts,” Nature, Vol. 411, No. 6840, 2001, pp. 907-908.
http://dx.doi.org/10.1038/35082140

[7]   R. Albert, H. Jeong and A.-L. Barabasi, “Error and Attack Tolerance of Complex Networks,” Nature, Vol. 406, No. 6794, 2000, pp. 378-382.
http://dx.doi.org/10.1038/35019019

[8]   M. Granovetter, “The Strength of Weak Ties,” American Journal of Sociology, Vol. 78, No. 6, 1973, pp. 1360-1380.
http://dx.doi.org/10.1086/225469

 
 
Top