Algorithms for Computing Some Invariants for Discrete Knots

Show more

References

[1] M. Boege, G. Hinojosa and A. Verjovsky, “Any Smooth Knot Sn R^{n+2} Is Isotopic to a Cubic Knot Contained in the Canonical Scaffolding of R^{n+2},” Revista Matemática Complutense, Vol. 24, No. 1, 2011, pp. 1-13.

http://dx.doi.org/10.1007/s13163-010-0037-4

[2] G. Hinojosa, A. Verjovsky and C. V. Marcotte, “Cubulated Moves and Discrete Knots,” 2013, pp. 1-40.

http://arxiv.org/abs/1302.2133

[3] D. Rolfsen, “Knots and Links,” AMS Chelsea Publishing, American Mathematical Society, Providence Rhode Island, 2003.

[4] R. H. Fox, “A Quick Trip through Knot Theory. Topology of 3-Manifolds and Related Topics,” Prentice-Hall, Inc., Upper Saddle River, 1962.

[5] “The Knot Atlas,” 2013. http://katlas.math.toronto.edu