Back
 EPE  Vol.5 No.4 B , July 2013
A Critical Eigenvalues Tracing Method for the Small Signal Stability Analysis of Power Systems
Abstract: The continuation power flow method combined with the Jacobi-Davidson method is presented to trace the critical eigenvalues for power system small signal stability analysis. The continuation power flow based on a predictor- corrector technique is applied to evaluate a continuum of steady state power flow solutions as system parameters change; meanwhile, the critical eigenvalues are found by the Jacobi-Davidson method, and thereby the trajectories of the critical eigenvalues, Hopf bifurcation and saddle node bifurcation points can also be found by the proposed method. The numerical simulations are studied in the IEEE 30-bus test system.
Cite this paper: S. Tsai, Y. Wu and C. Lee, "A Critical Eigenvalues Tracing Method for the Small Signal Stability Analysis of Power Systems," Energy and Power Engineering, Vol. 5 No. 4, 2013, pp. 677-682. doi: 10.4236/epe.2013.54B131.
References

[1]   R. T. Byerly, R. J. Bennon and D. E. Sherman, “Eigenvalue Analysis of Synchronizing Power Flow Oscillations in Large Electric Power Systems,” IEEE Transactions on Power Appar. Syst., Vol. 101, No. 1, 1982, pp. 235-243.

[2]   D.Y. Wong, G. J. Rogers, B. Porretta and P. Kundur, “Eigenvalue Analysis of Very Large Power Systems,” IEEE Transactions on Power System, Vol. 3, No. 2, 1988, pp. 472-480. doi:10.1109/59.192898

[3]   N. Martins, L.T.G. Lima and H. J. C. P. Pinto, “Computing Dominant Poles of Power System Transfer Functions,” IEEE Transactions on Power System, Vol. 11, No. 1, 1996, pp. 162-170. doi:10.1109/59.486093

[4]   I. J. Perez-Arriaga, G. C. Verghese and F. C. Schweppe, “Selective Modal Analysis with Applications to Electric Power Systems, Part I: Heuristic Introduction, Part II: The Dynamic Stability Problem,” IEEE Transactions on Power System, Vol. 101, No. 9, 1982, pp. 3117-3134.

[5]   L. Wang, and A. Semlyen, “Application of Sparse Eigenvalue Techniques to the Small Signal Stability Analysis of Large Power Systems,” IEEE Transactions on Power System, Vol. 5, No. 2, 1990, pp. 635-642. doi:10.1109/59.54575

[6]   G. Angelidis and A. Semlyen, “Efficient Calculation of Critical Eigenvalue Clusters in the Small Signal Stability Analysis of Large Power Systems,” IEEE Transactions on Power System, Vol. 10, No. 1, 1995, pp. 427-432. doi:10.1109/59.373967

[7]   N. Uchida and T. Nagao, “A New Eigen-analysis Method of Steady-state Stability Studies for Large Power Systems: S Matrix Method,” IEEE Transactions on Power System, Vol. 3, No. 2, 1988, pp. 706-714. doi:10.1109/59.192926

[8]   L. T. G. Lima, L. H. Bezerra, C. Tomei and N. Martins, “New Methods for Fast Small Signal Stability Assessment of Large Scale Power Systems,” IEEE Transactions on Power System, Vol. 10, No. 4, 1995, pp. 1979-1985. doi:10.1109/59.476066

[9]   G. Angelidis and A. Semlyen, “Improved Methodologies for the Calculation of Critical Eigenvalues in Small Signal Stability Analysis,” IEEE Transactions on Power System, Vol. 11, No. 3, 1996, pp. 1209-1217. doi:10.1109/59.535592

[10]   P. Kundur, G. J. Rogers, D. Y. Wong, L. Wang and M. G. Lauby, “A Comprehensive Computer Program Package for Small Signal Stability Analysis of Power Systems,” IEEE Transactions on Power System, Vol. 5, No. 4, 1990, pp. 1076-1083. doi:10.1109/59.99355

[11]   B. Lee, H. Song, S.-H. Kwon, D. Kim and K. Iba, “Calculation of Rightmost Eigenvalues in Power Systems Using the Block Arnoldi Chebyshev Method (BACM),” IET Gener. Transm. Distrib., Vol. 150, No. 1, 2003, pp. 23-27. doi:10.1049/ip-gtd:20020718

[12]   J. Rommes and N. Martins, “Efficient Computation of Transfer Function Dominant Poles Using Subspace Acceleration,” IEEE Transactions on Power System, Vol. 21, No. 3, 2006, pp. 1218-1226. doi:10.1109/TPWRS.2006.876671

[13]   N. Martins, “The Dominant Pole Spectrum Eigensolver,” IEEE Transactions on Power System, Vol. 12, No. 1, 1997, pp. 245-254. doi:10.1109/59.574945

[14]   G. L. G. Sleijpen and H. A. Van Der Vorst, “A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems,” SIAM Journal on Matrix Analysis Ap-plications, Vol. 17, No. 2, 1996, pp. 401-425. doi:10.1137/S0895479894270427

[15]   D. R. Fokkema, G. L. G. Sleijpen and H. A. Van Der Vorst, “Jacobi-Davidson Style QR and QZ Algorithm for the Reduction of Matrix Pencils,” SIAM Journal on Scientific Computing, Vol. 20, No. 1, 1998, pp. 94-125. doi:10.1137/S1064827596300073

[16]   X. Y. Wen and V. Ajjarapu, “Application of a Novel Eigenvalue Trajectory Tracing Method to Identify Both Oscillatory Stability Margin and Damping Margin,” IEEE Transactions on Power System, Vol. 21, No. 2, 2006, pp. 817-823. doi:10.1109/TPWRS.2006.873111

[17]   D. Yang and V. Ajjarapu, “Critical Eigenvalues Tracing for Power System Analysis Via Continuation of Invariant Subspaces and Projected Arnoldi Mthod,” IEEE Transactions on Power System, Vol. 22, No. 1, 2007, pp. 324-332. doi:10.1109/TPWRS.2006.887966

[18]   P. W. Sauer and M. A. Pai, “Power System Dynamics and Stability,” Prentice-Hall, Inc., New Jersey, USA, 1998.

[19]   A. Lyapunov, “The General Problem of the Stability of Motion,” Taylor and Francis, London, 1892.

[20]   V. Ajjarapu C. Christy, “The Continuation Power Flow:A Tool for Steady State Voltage Stability Analysis,” IEEE Transactions on Power System, Vol. 7, No. 1, 1992, pp. 416-423. doi:10.1109/59.141737

 
 
Top