Optimal Static State Estimation Using hybrid Particle Swarm-Differential Evolution Based Optimization

Show more

In this paper, swarm optimization hybridized with differential evolution (PSO-DE) technique is proposed to solve static state estimation (SE) problem as a minimization problem. The proposed hybrid method is tested on IEEE 5-bus, 14-bus, 30-bus, 57-bus and 118-bus standard test systems along with 11-bus and 13-bus ill-conditioned test systems under different simulated conditions and the results are compared with the same, obtained using standard weighted least square state estimation (WLS-SE) technique and general particle swarm optimization (GPSO) based technique. The performance of the proposed optimization technique for SE, in terms of minimum value of the objective function and standard deviations of minimum values obtained in 100 runs, is found better as compared to the GPSO based technique. The statistical error analysis also shows the superiority of the proposed PSO-DE based technique over the other two techniques.

References

[1] G. Durgaprasad and S. S. Thakur, “Robust Dynamic State Estimation of Power Systems Based on M-estimation and Realistic Modeling of System Dynamics,” IEEE Transactions Power System, Vol. 13, 1998, pp. 1331-1336. doi:10.1109/59.736273

[2] F. C. Schweppe and J. Wildes, “Power System Static State Estimation, Part I: Exact Model,” IEEE Transactions Power App. Syst., Vol. PAS-89, 1970, pp. 120-125.

[3] G. W. Stagg, J. F. Dopazo, A. Klitin and L. S. VanSlyck, “Techniques for the Real-time Monitoring of Power System Operations,” IEEE Transactions Power App. Syst., Vol. PAS-89, No. 4, 1970, pp. 545-555.
doi:10.1109/TPAS.1970.292601

[4] A. Monticelli and F. F. Wu, “Analytical Tools for Power System Restoration-Conceptual design,” IEEE Transactions on Power Apparatus and Systems, Vol. 3, 1988, pp. 201-206.

[5] A. Monticelli, “Electric Power System State Estimation,” in Proceedings of the, 2000, pp. 1069-1075.

[6] G. N. Korres, “A Robust Algorithm for Power System State Estimation with Equality Constraints,” IEEE Transactions on Power Apparatus and Systems, Vol. 25, No. 3, 2010, pp. 1531-1541.
doi:10.1109/TPWRS.2010.2041676

[7] A. Monticelli and A. Garcia, “Reliable Bad Data Processing for Real-time State Estimation,” IEEE Transactions Power Apparatus and Systems, Vol. PAS-102, 1983, pp. 1126-1139. doi:10.1109/TPAS.1983.318053

[8] N. G. Bretas, “An Iterative Dynamic State Estimation and Bad Data Processing,” International Journal of Electrical Power and Energy Systems, Vol. 11, 2010, pp. 70-74. doi:10.1016/0142-0615(89)90010-0

[9] N. G. Bretas, A. S. Bretas and S. A. Piereti, “Innovation Concept for Measurement Gross Error Detection and Identification in Power System State Estimation,” The Institution of Engineering and Technology, Vol. 5, 2011, pp. 603-608. doi:10.1049/iet-gtd.2010.0459

[10] A. M. Sasson, S. T. Ehrmann, P. Lynch, and L. S. Van Slyck, “Automatic Power System Network Topology Determination,” IEEE Transactions Power Apparatus Systems, Vol. PAS-92, No. 2, 1973, pp. 610-618.
doi:10.1109/TPAS.1973.293764

[11] K. A. Clements and A. S. Costa, “Topology Error Identification Using Normalized Lagrange Multipliers,” IEEE Transactions Power Systems, Vol. 13, 1998, pp. 347-353. doi:10.1109/59.667350

[12] J. Chen and A. Abur, “Enhanced Topology Error Processing Via Optimal Measurement Design,” IEEE Transactions Power Systems, Vol. 23, 2008, pp. 845-852. doi:10.1109/TPWRS.2008.926083

[13] A. Monticelli and F. F. Wu, “Observability Analysis for Orthogonal Transformation based State Estimation,” IEEE Transactions Power Systems, Vol. PWRS-1, 1986, pp. 201-206. doi:10.1109/TPWRS.1986.4334870

[14] G. N. Korres and P. J. Katsikas, “Reduced Model for Numerical Observability Analysis in Generalised State Estimation,” IET Gener.,Transm. And Distrib., vol. 152, pp. 99-108, 2005. doi:10.1049/ip-gtd:20041059

[15] R. C. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” in Symposium on Micro Machine and Human Science. Japan: Nagoya, Piscataway, NJ, 1995, pp. 39-43. doi:10.1109/MHS.1995.494215

[16] R. C. Eberhart and Y. Shi, “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization,” in Congress on Evolutionary Computation, La Jolla, CA , USA 2000, pp. 84-88.

[17] P. Acharjee and S. K. Goswami, “Expert Algorithm Based on Adaptive Particle Swarm Optimization for Power Flow Analysis,” Expert Systems with Applications, Vol. 36, 2009, pp. 5151-5156.
doi:10.1016/j.eswa.2008.06.027

[18] Y. Fukuyama and H. Yoshida, “A Particle Swarm Optimization for Reactive Power and Voltage Control in Electrical Power Systems,” in Proc. of 2001 Congress on Evolutionary Computation 2001, pp. 87-93.

[19] M. A. Abido, “Optimal Design of Power-system Stabilizers Using Particle Swarm Optimization,” IEEE Transactions on Energy Conversion, Vol. 17, 2002, pp. 406-413. doi:10.1109/TEC.2002.801992

[20] R. Storn and K. Price, "Differential Evolution a Simple and Effective Scheme for Global Optimization over Continuous Spaces,” 1995.

[21] T. Hendtlass, “A Combined Swarm Differential Algorithm for Optimization Problems,” in Proceedings of the fourteenth International conference on Industrial and Engineering Applications of Artificial Intelligence and Expert systems, 2001, pp. 11-18.

[22] M. G. H. Omran, A. P. Engelbrecht and A. Salman, "Diffeerential evolution based particle swarm optimization," in Proceedings of the IEEE Swarm Intelligence Symposium, 2007, pp. 112-119.

[23] B. Shaw, V. Mukherjee and S. P. Ghoshal, “Solution of Combined Economic and Emission Dispatch Problems Using Hybrid Craziness-based PSO with Differential Evolution,” Presented at the IEEE Symposium on Differential Evolution, 2011.

[24] S. Mallick, D. V. Rajan, S. S. Thakur, P. Acharjee and S. P. Ghoshal, “Development of a New Algorithm for Power Flow Analysis,” International of Journal of Electtrical Power and Energy Sysems, Vol. 33, 2011, pp. 1479-1488.
doi:10.1016/j.ijepes.2011.06.030