[1] Whiting, D.R., Guariguata, L., Weil, C. and Shaw, J. (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311-321.
http://dx.doi.org/10.1016/j.diabres.2011.10.029
[2] Eisenbarth, G.S. (1986) Type I diabetes mellitus. A chronic autoimmune disease. The New England Journal of Medicine, 314, 1360-1368.
http://dx.doi.org/10.1056/NEJM198605223142106
[3] Hua, Q., Hu, S., Jia, W., Wang, S. and Weiss, M.A. (2005) Toward the Active Conformation of Insulin. Stereospecific modulation of a structural switch in the B chain. The Journal of Biological Chemistry, 281, 24900-24909.
http://dx.doi.org/10.1074/jbc.M602691200
[4] Olsen, H.B., Ludvigsen, S. and Kaarsholm, N.C. (1996) Solution structure of an engineered insulin monomer at neutral pH. Biochemistry, 35, 8836-8845.
http://dx.doi.org/10.1021/bi960292+
[5] Kurtzhals, P. (2004) Engineering predictability and protraction in a basal insulin analogue: The pharmacology of insulin detemir. International Journal of Obesity, 28, 23-28.
http://dx.doi.org/10.1038/sj.ijo.0802746
[6] Bolli, G.B., Marchi, R.D. Di, Park, G.D., Pramming, S. and Koivisto, V.A. (1999) Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia, 42, 1151-1167.
http://dx.doi.org/10.1007/s001250051286
[7] Hermansen, K., et al. (2004) Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basalbolus therapy for patients with type 1 diabetes. Diabetologia, 47, 622-629.
http://dx.doi.org/10.1007/s00125-004-1365-z
[8] Senesh, G., Bushi, D., Neta,A. and O. Yodfat (2010) Compatibility of insulin lispro, aspart, and glulisine with the SoloTMMicroPump, a novel miniature insulin pump. Journal of Diabetes Science and Technology, 4, 104-110.
[9] Swinnen, S.G.H.A., et al. (2009) Rationale, design, and baseline data of the insulin glargine (Lantus) versus insulin detemir (Levemir) treat-to-target (L2T3) study: A multinational, randomized noninferiority trial of basal insulin initiation in type 2 diabetes. Diabetes Technology and Therapeutics, 11, 739-743.
http://dx.doi.org/10.1089/dia.2009.0044
[10] Chao, M., et al. (2010) Bioequivalence between two human insulin analogs in chinese population: Glulisine and lispro. Endocrine, 38, 48-52.
http://dx.doi.org/10.1007/s12020-010-9326-4
[11] Setter, S.M., Corbett, C.F., Campbell, R.K. and White, J.R. (2000) Insulin aspart: A new rapid-acting insulin analog. The Annals of Pharmacotherapy, 34, 1423-1431.
[12] Garg, S.K., Ellis, S.L. and Ulrich, H. (2005) Insulin glulisine: A new rapid-acting insulin analogue for the treatment of diabetes. Expert Opinion on Pharmacotherapy, 6, 643-651.
http://dx.doi.org/10.1517/14656566.6.4.643
[13] Bolli, G.B. and Owens, D.R. (2000) Insulin glargine. The Lancet, 356, 443-445.
http://dx.doi.org/10.1016/S0140-6736(00)02546-0
[14] Hansen, B.F., et al. (1996) Susteined signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochemical Journal, 315, 271-279.
[15] Hirsch, I.B. (2005) Drug Therapy Insulin Analogues. The New England Journal of Medicine, 352, 174-183.
http://dx.doi.org/10.1056/NEJMra040832
[16] Karplus, M. and Petsko, G.A. (1990) Molecular dynamics simulations in biology. Nature, 347, 631-639.
http://dx.doi.org/10.1038/347631a0
[17] Karplus, M. and McCammon, A. (2002) Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9, 646-652.
http://dx.doi.org/10.1038/nsb0902-646
[18] Budi, A., Legge, S., Treutlein, H. and Yarovsky, I. (2004) Effect of external stresses on protein conformation: A computer modelling study. European Biophysics Journal, 33, 121-129.
http://dx.doi.org/10.1007/s00249-003-0359-y
[19] Legge, F.S., Budi, A., Treutlein, H. and Yarovsky, I. (2006) Protein flexibility: Multiple molecular dynamics simulations of insulin chain B. Biophysical Chemistry, 119, 146-157.
http://dx.doi.org/10.1016/j.bpc.2005.08.002
[20] Zoete, V., Meuwly, M. and Karplus, M. (2005) Study of the insulin dimerization: Binding free energy calculations and per-residue free energy decomposition. Proteins: Structure, Function, and Bioinformatics, 61, 79-93.
http://dx.doi.org/10.1002/prot.20528
[21] Mark, A.E., Berendsen, H.J.C. and Gunsteren, W.F.V. (1991) Conformational flexibility of aqueous monomeric and dimeric insulin: a molecular dynamics study. Biochemistry, 30, 10866-10872.
http://dx.doi.org/10.1021/bi00109a009
[22] Pronk, S., et al. (2013) GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845-854.
http://dx.doi.org/10.1093/bioinformatics/btt055
[23] Eswar, N., Eramian, D., Webb, B., Shen, M. and Sali, A. (2008) Protein structure modeling with MODELLER. Structural Proteomics. Methods in Molecular Biology, 426, 145-159.
http://dx.doi.org/10.1007/978-1-60327-058-8_8
[24] Kaminski, G.A. and Friesner, R.A. (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105, 6474-6487.
http://dx.doi.org/10.1021/jp003919d
[25] Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33-38.
http://dx.doi.org/10.1016/0263-7855(96)00018-5
[26] Heller, S., Kozlovski, P. and Kurtzhals, P. (2007) Insulin’s 85th anniversary—An enduring medical miracle. Diabetes Research and Clinical Practice, 78, 149-158.
http://dx.doi.org/10.1016/j.diabres.2007.04.001
[27] Hua, Q. and Weiss, M.A. (2004) Mechanism of insulin fibrillation. The structure of insulin under amyloidogenic conditions resembles a protein-folding. The Journal of Biological Chemistry, 279, 21449-21460.
http://dx.doi.org/10.1074/jbc.M314141200