ABB  Vol.4 No.11 , November 2013
Environmental, morphological and physiological factors analyzes for optimization of potato (Solanum tuberosum L.) microtuber in vitro germination
Abstract: The microtuber is considered one of the most effective means of spreading basic materials, as well as transporting and preserving potato germplasm varieties. To define the optimal conditions for the potato microtuber in vitro germination of Aida, Atlas and Odessa varieties, the effects of temperature, physiological age and grade (size) were evaluated. The study conducted at three different temperature levels has demonstrated that the most favorable temperature for microtuber germination at a higher and faster germination rate was 25℃, regardless of the variety. In addition, microtubers of large caliber, greater than 4 mm, germinate more quickly, with a higher germination rate, than smaller size ones (less than 4 mm) for all genotypes. For Atlas, Aida and Odessa varieties, a germination rate equal to 86.66%, 70% and 70% respectively, was obtained for microtubers with a caliber superior to 4 mm. Physiological age influences microtuber germination. The mean length of sprouts, reached after a 7 week incubation period, was more marked at “multiple sprout” and “branched sprout” stages than at a “monosprout” stage. The average length was 2.35 cm, 2.48 cm and 1.5 cm, respectively. Thus, it is necessary to plant microtubers at a “multiple sprout” stage to optimize their yield in plants and minitubers.
Cite this paper: Dieme, A. and Sy, M. (2013) Environmental, morphological and physiological factors analyzes for optimization of potato (Solanum tuberosum L.) microtuber in vitro germination. Advances in Bioscience and Biotechnology, 4, 986-992. doi: 10.4236/abb.2013.411131.

[1]   Charles, G., Rossignol, L. and Rossignol, M. (1995) Mise au point d’un modèle de développement et de tubérisation contrÔlés et synchrones chez lapomme de terre cultivée in vitro. Acta Botanica Gallica, 142, 289-300.

[2]   Désiré, S., Couillerot, J.P. and Vasseur J. (1995) Germination en serre des microtubercules de pomme de terre (Solanum tuberosum L.) produit in vitro: Influence du diamètre, de la densité de la plantation et de l’age des microtubercules sur le rendement. Acta Botanica Gallica, 142, 379-387.

[3]   Coleman, W.K., Donnelly, D.J. and Coleman, S.E. (2001) Potato microtubers as research tools: A review. American Journal of Potato Research, 78, 47-55.

[4]   Estrada, R., Tovar, P. and Dodds, J.H. (1986) Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tissue and Organ Culture, 3, 3-10.

[5]   Slimmon, T., Machado, V.S. and Coffin, R. (1989) The effect of light on in vitro microtuberization of potato cultivars. American Potato Journal, 66, 843-848.

[6]   Wiersema, S.G., Cabello, R., Tovar, P. and Dodds, J.H. (1987) Rapid seed multiplication by planting into beds microtubers and in vitro plants. Potato Research, 30, 200-214.

[7]   Leclerc, Y., Donnelly, D.J. and Seabrook, J.E.A. (1994) Microtuberization of layered shoots and cuttings of potato: The influence of growth regulators and incubation periods. Plant Cell Tissue and Organ Culture, 37, 113-120.

[8]   Dieme, A., Sagna, M. and Sy, M.O. (2011) Influence of hormonal treatments and of sucrose on the microtuberization of three potato varieties (Solanum tuberosum L.) adapted to agroclimatic conditions in Senegal). International Journal of Plant, Animal and Environmental Sciences, 1, 69-77.

[9]   Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologa Plantarum, 15, 473-497.

[10]   Diémé, A., Sambe, M.A.N., Agbangba, E.C. and Sy, M.O. (2013) Residual effects of sucrose and hormonal treatments of the tuberization medium on in vitro germination of potato (Solanum tuberosum L.) microtubers. American Journal of Plant Sciences, 4, 1872-1878.

[11]   Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist, 171, 501-523.

[12]   Bewley, J.D. (1997) Seed germination and dormancy. Plant Cell, 9, 1055-1066.

[13]   Li, B.L. and Foley, M.E. (1997) Genetic and molecular control of seed dormancy. Trends in Plant Science, 2, 384-389.

[14]   Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research, 14, 1-16.

[15]   Burton, W.G. (1989) The potato. Longman Scientific & Technical, Harlow, England, 365-522.

[16]   Désiré, S., Couillerot, J.P., Hilbert, J.L. and Vasseur J. (1995) Dormance et germination des microtubercules de pomme de terre (Solanum tuberosum L.) produit in vitro: Effets de la concentration en saccharose du milieu de tubérisation, de la durée de conservation à 4℃ et d’un traitement avec de l’acide gibbérellique. Acta Botanica Gallica, 142, 371-378.

[17]   Bryan, J.E. (1990) Rupture de la dormance des tubercules de pomme de terre. Guide de recherche du C.I.P. 16, Cambridge University Press, Cambridge, 41-45.

[18]   CÔme, D. and Corbineau, F. (1992) Les semences et le froid. Les végétaux et le froid, Hermann, Paris, 401-461.

[19]   Camelia, F.T., Morar, G., Teodora, F. and Moldovan, C. (2011) Research regarding the influence of the caliber and the seeds treatment on the seeds germination in interaction with the genotype. Scientific Papers, UASVM Bucharest, Series A, Vol. LIV, 2011.

[20]   Mikou, K., El Yamani, J. and Jarrar, O. (2003) étude comparative des performances en production de quelques générations de Solanum tuberosum consommées au Maroc. Actes de l’Institut Agronomique et Vétérinaire, 23, 143151.

[21]   Désiré, S., Couillerot, J.P., Hilbert, J.L. and Vasseur, J. (1995) Protein changes in Solanum tuberosum during in vitro tuberization of nodal cuttings. Plant Physiology and Biochemistry, 33, 303-310.

[22]   Kumar, G.N.M. and Knowles, N.R. (1996) Oxidative stress results in increased sinks for metabolic energy during aging and sprouting of potato seed-tubers. Plant Physiology, 112, 1301-1313.

[23]   Kumar, G.N.M., Houtz, R.L. and Knowles, N.R. (1999) Age-induced protein modifications and increased proteolysis in potato seed-tubers. Plant Physiology, 119, 89-100.

[24]   Coleman, W.K. (2000) Physiological ageing of potato tubers: A review. Annals of Applied Biology, 137, 189-199.

[25]   Zabrouskov, V., Kumar, G.N.M., Spychalla, J.P. and Knowles N.R. (2002) Oxidative metabolism and the physiological age of seed potatoes are affected by increased α-linolenate content. Physiologia Plantarum, 116, 172-185.

[26]   Perennec, P. and Madec, P. (1980) Age physiologique du plant de pomme de terre. Incidence sur la germination et répercussions sur le comportement des plantes. Potato Research, 23, 183-199.

[27]   Vakis, N. J. (1986) Influence of physiological ageing of seed potatoes on yield and earliness. Potato Research, 29, 417-425.

[28]   Désiré, S., Couillerot, J.P., Hilbert, J.L. and Vasseur, J., (1995) Protein changes in Solanum tuberosum L. during storage and dormancy breaking of in vitro microtubers. Plant Physiology and Biochemistry, 33, 479-487.

[29]   Reust, W. (1986) EAPR working group physiological age of the potato. Potato Research, 29, 268-271.

[30]   Johnson, S.B. (1997) Selecting, cutting and handling potato seed. University of Maine.