APM  Vol.3 No.7 A , October 2013
Primes in Arithmetic Progressions to Moduli with a Large Power Factor
Author(s) Ruting Guo*
ABSTRACT

Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by highpowers of a given integer and showed that for integer a≥2 and real number A>0. There is a B=B(A)>0 such that

,

holds uniformly for moduli that are powers of a. In this paper we are able to improve his result.


Cite this paper
R. Guo, "Primes in Arithmetic Progressions to Moduli with a Large Power Factor," Advances in Pure Mathematics, Vol. 3 No. 7, 2013, pp. 25-32. doi: 10.4236/apm.2013.37A003.
References
[1]   H. Iwaniec and E. Kowalski, “Analytic Number Theory,” American Mathematical Society, Providence, 2004.

[2]   E. Bombieri, “On the Large Sieve,” Mathematika, Vol. 12, No. 2, 1965, pp. 210-225.
http://dx.doi.org/10.1112/S0025579300005313

[3]   A. I. Vinogradov, “The Density Hypothesis for Dirichlet L-Series,” Izvestiya Rossiiskoi Akademii Nauk SSSR. Seriya Matematicheskaya, Vol. 29, 1965, pp. 903-934.
http://dx.doi.org/10.1007/s11139-006-0250-4

[4]   P. D. T. A. Elliott, “Primes in Progressions to Moduli with a Large Power Factor,” The Ramanujan Journal, Vol. 13, No. 1-3, 2007, pp. 241-251.

[5]   M. B. Barban, Y. V. Linink and N. G. Chudakov, “On Prime Numbers in an Arithmetic Progression with a Prime-Power Difference,” Acta Arithmetica, Vol. 9, No. 4, 1964, pp. 375-390.

[6]   J. Y. Liu and M. C. Liu, “The Exceptional Set in Four Prime Squares Problem,” Illinois Journal of Mathematics, Vol. 44, No. 2, 2000, pp. 272-293.

[7]   J. Y. Liu, “On Lagrange’s Theorem with Prime Variables,” Quarterly Journal of Mathematics (Oxford), Vol. 54, No. 4, 2003, pp. 453-462.
http://dx.doi.org/10.1093/qmath/hag028

[8]   D. R. Heath-Brown, “Prime Numbers in Short Intervals and a Generalized Vaughan’s Identity,” Canadian Journal of Mathematics, Vol. 34, 1982, pp. 1365-1377.
http://dx.doi.org/10.4153/CJM-1982-095-9

[9]   S. K. K. Choi and A. Kumchev, “Mean Values of Dirichlet Polynomials and Applications to Linear Equations with Prime Variables,” Acta Arithmetica, Vol. 123, No. 2, 2006, pp. 125-142.
http://dx.doi.org/10.4064/aa123-2-2

[10]   H. Ivaniec, “On Zeros of Dirichlet’s L-Series,” Inventiones Mathematicae, Vol. 23, No. 2, 1974, pp. 97-104.
http://dx.doi.org/10.1007/BF01405163

[11]   K. Prachar, “Primzahlverteilung,” Grund. der math. Wiss., Springer-Verlag, Berlin-Gottingen-Heidelberg, 1957.

[12]   D. R. Heath-Brown, “Zero-Free Regions for Dirichlet L-Functions and the Least Prime in an Arithmetic Progressions,” Proceedings of the London Mathematical Society, Vol. 64, No. 2, 1992, pp. 265-338.
http://dx.doi.org/10.1112/plms/s3-64.2.265

 
 
Top