An Energy-Based Centrality for Electrical Networks

Show more

References

[1] R. Albert, I. Albert and G. L. Nakarado, “Structural Vulnerability of the North American Power Grid,” Physical Review E, Vol. 69, No. 2, 2004, pp. 1-4.
doi:10.1103/PhysRevE.69.025103

[2] B. A. Carreras, V. E. Lynch, I. Dobson and D. E. Newman, “Critical Points and Transitions in an Electric Power Transmission Model for Cascading Failure Blackouts,” Chaos, Vol. 12, No. 4, 2002, pp. 985-994.
doi: 10.1063/1.1505810

[3] P. Crucittia, V. Latorab and M. Marchioric, “A Topological Analysis of the Italian Electric Power Grid,” Physica A: Statistical Me-chanics and its Applications, Vol. 338, No. 1-2, 2004, pp. 92-97.
doi:10.1016/j.bbr.2011.03.031

[4] M. Rosas-Casals, S. Valverde and R. V. Solé, “Topological Vulnerability of the European Power Grid Under Errors and Attacks,” International Journal of Bifurcation and Chaos in Ap-plied Sciences and Engineering, Vol. 17, No. 7, 2007, pp. 2465-2475.
doi: 10.1142/S0218127407018531

[5] M. E. J. Newman, “A Measure of Betweenness Centrality Based on Random Walks,” Social Networks, Vol. 27, No. 1, 2005, pp. 39-54. doi:10.1016/j.socnet.2004.11.009

[6] U. Brandes and D. Fleischer, “Centrality Measures Based on Current Flow,” Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Springer, Berlin, Vol. 3404, 2005, pp. 533-544. doi:10.1007/978-3-540-31856-9_44

[7] K. A. Stephenson and M. Zelen, “Rethinking Centrality: Methods and Examples,” Social Networks, Vol. 11, No. 1, 1989, pp. 1-37. doi:10.1016/0378-8733(89)90016-6

[8] P. Hines and S. Blumsack, “A Centrality Measure for Electrical Networks,” Proceedings of the 41st Hawaii International Conference on System Sciences, Hawaii, 7-10 January 2008, p.185. doi:10.1109/HICSS.2008.5

[9] Z. H. Wang, A. Scaglione and R. J. Thomas, “Electrical Cen-trality Measures for Power Grids,” Control and Optimi-zation Methods for Electric Smart Grids, Power Elec-tronics and Power System, Springer, New York, Vol.3, 2012, pp. 239-255.
doi:10.1007/978-1-4614-1605-0_12

[10] E. Bompard, D. Wu and F. Xue, “The Concept of Betweenness in the Analysis of Power Grid Vulnerability,” Complexity in Engineering, Rome, 22-24 February, 2010, pp. 52-54. doi:10.1109/COMPENG.2010.10

[11] D. J. Klein and M. Randic, “Resistance Distance,” Journal of Mathematical Chemistry, Vol. 12, No. 1, 1993, pp.81-95. doi:10.1007/BF01164627

[12] K. C. Das, A. D. Gungor and A. S. Cevik, “ On Kirchhoff Index and Resistance-Distance Energy of a Graph,” MATCH Communications in Mathematical and in Computer Chemistry, Vol. 67, No. 2, 2012, pp. 541-556.

[13] B. Zhou and N. Trinajstic, “On Resistance-Distance and Kirchhoff Index,” Journal of Mathematical Chemistry, Vol. 46, No. 1, 2009, pp. 283-289.
doi:10.1007/s10910-008-9459-3

[14] L. C. Freeman , “A Set of Measures of Centrality Based On Betweenness,” Sociometry, Vol. 40, No. 1, 1977, pp. 35-41.

[15] M. Girvan and M. E. J. Newman, “Community Structure in Social and Biological Networks,” Proceedings of the National Academy of Sciences, Vol. 99, No. 12, 2002, pp. 7821-7826. doi:10.1073/pnas.122653799

[16] B. Bollobás, “Modern Graph Theory,”3rd Edition, Springer-Verlag, New York, 2003.

[17] R. Bapat, I. Gutman and W. Xiao, “A Simple Method for Computing Resistance Distance,” Zeitschrift für Naturforschung, Vol. 58a, No. 9-10, 2003, pp. 494-498.

[18] E. Zio , R. Piccinelli and M. Delfanti , “Application of the Load Flow and Random Flow Models for the Analysis of Power Transmission Networks,” Reliability Engineering and System Safety, Vol. 103, 2012, pp. 102-109. doi:10.1016/j.ress.2012.02.005