Analytical and Approximate Solutions to the Fee Vibration of Strongly Nonlinear Oscillators

Show more

References

[1] M. Ghadimi and H. D. Kaliji, “Application of the Harmonic Balance Method on Nonlinear Equations,” World Applied Sciences Journal, Vol. 22, No. 4, 2013, pp. 532-537.

[2] S. KLai, C. W. Lim, B. S. Wu, C. Wang, Q. C. Zeng and X. F. He, “Newton-Harmonic Balancing Approach Applications for Accurate Solutions to Nonlinear Cubic-Quintic Duffing Oscillators,” Applied Mathematical Modeling, Vol. 33, No. 2, 2009, pp. 852-866.

http://dx.doi.org/10.1016/j.apm.2007.12.012

[3] J. H. He, “Comment on He’s Frequency Formulation for Nonlinear Oscillators,” European Journal of Physics, Vol. 29, No. 4, 2008, pp. 19-22.

http://dx.doi.org/10.1088/0143-0807/29/4/L02

[4] J. H. He, “An Improved Amplitude-Frequency Formulation for Nonlinear Oscillators,” International Journal of Nonlinear Science and Numerical Simulation, Vol. 9, No. 2, 2008, pp. 211-212.

http://dx.doi.org/10.1515/IJNSNS.2008.9.2.211

[5] A. G. Davodi, D. D. Gangi, R. Azami and H. Babazadeh, “Application of Improved Amplitude-Frequency Formulation to Nonlinear Differential Equation of Motion Equations,” Modern Physics Letters B, Vol. 23, No. 28, 2009, pp. 3427-3436.

http://dx.doi.org/10.1142/S0217984909021466

[6] H.-L. Zhang, “Periodic Solutions for Some Strongly Nonlinear Oscillators by He’s Energy Balance Method,” Computers and Mathematics with Applications, Vol. 58, No. 11-12, 2009, pp. 2423-2426.

http://dx.doi.org/10.1016/j.camwa.2009.03.068

[7] I. Mehdipour, D. D. Ganji and M. Mozaffari, “Application of the Energy Balance Method to Nonlinear Vibrating Equations,” Current Applied Physics, Vol. 10, No. 1, 2010, pp. 104-112.

http://dx.doi.org/10.1016/j.cap.2009.05.016

[8] J. H. He, G. C. Wu and F. Austin, “The Variational Iteration Method Which Should Be Followed,” Nonlinear Science Letters A, Vol. 1, No. 1, 2010, pp. 1-30.

[9] N. Herisanu and V. Marinca, “A Modified Variational iteration Method for Strongly Nonlinear Problems,” Nonlinear Science Letters A, Vol. 1, 2010, pp. 183-192.

[10] J. H. He, “A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems,” International Journal of Non-Linear Mechanics, Vol. 35, No. 1, 2000, pp. 37-43.

http://dx.doi.org/10.1016/S0020-7462(98)00085-7

[11] J. H. He, “Application of Homotopy Perturbation Method to Nonlinear Wave Equations,” Chaos, Solitons and Fractals, Vol. 26, No. 3, 2005, pp. 695-700.

http://dx.doi.org/10.1016/j.chaos.2005.03.006

[12] D. D. Ganji, “The Application of He’s Homotopy Perturbation Method to Nonlinear Equations Arising in Heat Transfer,” Physics Letters A, Vol. 355, No. 4-5, 2006, pp. 337-341. http://dx.doi.org/10.1016/j.physleta.2006.02.056

[13] A. R. Ghotbi, M. Omidvar and A. Barari, “Infiltration in Unsaturated Soils—An Analytical Approach,” Computers and Geotechnics, Vol. 38, No. 6, 2011, pp. 777-782.

http://dx.doi.org/10.1016/j.compgeo.2011.05.007

[14] S. S. Ganji, A. Barari and D. D. Ganji, “Approximate Analyses of Two Mass-Spring Systems and Buckling of a Column,” Computers and Mathematics with Applications, Vol. 61, No. 4, 2011, pp. 1088-1095.

http://dx.doi.org/10.1016/j.camwa.2010.12.059

[15] M. Ghadimi, H. D. Kaliji and A. Barari, “Analytical Solutions to Nonlinear Mechanical Oscillation Problems,” Journal of Vibroengineering, Vol. 13, No. 2, 2011, pp. 133-143.

[16] S.-S. Chen and C.-K. Chen, “Application of the Differential Transformation Method to the Free Vibrations of Strongly Nonlinear Oscillators,” Nonlinear analysis: Real Word Applications, Vol. 10, No. 2, 2009, pp. 881-888.

http://dx.doi.org/10.1016/j.nonrwa.2005.06.010

[17] M. N. Hamden and N. H. Shabaneh, “On the Large Amplitude Free Vibrations of a Restrained Uniform Beam Carrying an Intermediate Lumped Mass,” Journal of Sound and Vibration, Vol. 199, No. 5, 1997, pp. 711-736.

http://dx.doi.org/10.1006/jsvi.1996.0672

[18] D. J. Goorman, “Free Vibration of Beams and Shafts,” Wiley, New York, 1975.

[19] R. C. Hibbeler, “Engineering Mechanics Dynamics,” Prentice-Hall, New Jersey, 2001.

[20] S. H. Hoseini, T. Pirhodaghi, M. T. Ahmadian and G. H. Farrahi, “On the Large Amplitude Free Vibrations of Tapered Beams: An Analytical Approach,” Mechanics Research Communications, Vol. 36, No. 8, 2009, pp. 892-897. http://dx.doi.org/10.1016/j.mechrescom.2009.08.003

[21] M. Ghadimi, A. Barari, H. D. Kaliji and G. Domairry, “Periodic Solutions for Highly Nonlinear Oscillation Systems,” Archives of Civil and Mechanical Engineering, Vol. 12, No. 3, 2012, pp. 389-395.

http://dx.doi.org/10.1016/j.acme.2012.06.014

[22] A. H. Nayfeh and D. T. Mook, “Nonlinear Oscillations,” Wiley, New York, 1979.

[23] D. D Gangi and M. Azimi, “Application of Max Min Approach and Amplitude Frequency Formulation to Nonlinear Oscillation Systems,” UPB Scientific Bulletin, Series A, Vol. 74, No. 3, 2012, pp. 131-140.

[24] D. D Gangi, M. Azimi and M. Mostofi, “Energy Balance Method and Amplitude Frequency Formulation Based Simulation of Strongly Non-Linear Oscillators,” Indian journal of Pure and Applied Physics, Vol. 50, No. 9, 2012, pp. 670-675.