Back
 AJAC  Vol.4 No.10 B , October 2013
Optimization and Validation of a Method for Heavy Metals Quantification in Soil Samples by Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS)
Abstract: In this work, a method for quantification of heavy metals Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS) in soil samples of El Bierzo district (Spain) has been optimized and validated. Optimization was carried out for elements: Cr, Mn, Co, Ni, Cu, Zn, Se, As, Cd, Hg, Pb and U. Validation of the method was performed with Certified and Standard Reference Materials (CRMs and SRMs); SRM2709, CRM020-051 and CRM050-051. Results obtained under optimized conditions can be summarized as follows: a) the Limits of Detection (LODs) were in the order of sub fg·g-1 for Cr, Mn, Cu, Co, As, Cd, Hg, Pb and U, and few fg·g-1for Ni, Zn and Se; b) precision measurement, in terms of relative standard deviation (RSD), was been below 5%; c) the average recovery of CRM was between 81.3% and 98%. In conclusion, the method offers several advantages: fast, good accuracy, very low values of Limits of Quantification (LOQs) and high sensitivity on measurement of heavy metal.
Cite this paper: H. Hernández-Mendoza, M. Mejuto, A. Cardona, A. García-Álvarez, R. Millán and A. Yllera, "Optimization and Validation of a Method for Heavy Metals Quantification in Soil Samples by Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS)," American Journal of Analytical Chemistry, Vol. 4 No. 10, 2013, pp. 9-15. doi: 10.4236/ajac.2013.410A2002.
References

[1]   Z. J. Xue, S. Q. Liu, Y. L. Liu and Y. L. Yan, “Health Risk Assessment of Heavy Metals for Edible Parts of Vegetables Grown in Sewage-Irrigated Soils in Suburbs of Baoding City, China,” Environmental Monitoring and Assessment, Vol. 184, No. 6, 2012, pp. 3503-3513.
http://dx.doi.org/10.1007/s10661-011-2204-6

[2]   M. Wang, B. Markert, W. Chen, C. Peng and Z. J. Ouyang, “Identification of Heavy Metal Pollutants Using Multivariate Analysis and Effects of Land Uses on Their Accumulation in Urban Soils in Beijing, China,” Environmental Monitoring and Assessment, Vol. 184 No. 10, 2012, pp. 5889-5897.
http://dx.doi.org/10.1007/s10661-011-2388-9

[3]   E. Oyoo-Okoth, W. Admiraal, O. Osano, V. Ngure, M. H. Kraak and E. S. Omutange, “Monitoring Exposure to Heavy Metals among Children in Lake Victoria, Kenya: Environmental and Fish Matrix,” Ecotoxicology and Environmental Safety, Vol. 73 No. 7, 2010, pp. 1797-1803.
http://dx.doi.org/10.1016/j.ecoenv.2010.07.040

[4]   M. Klavins, O. Potapovics and V. Rodinov, “Heavy Metals in Fish from Lakes in Latvia: Concentrations and trends of Changes,” Bulletin of Environmental Contamination and Toxicology, Vol. 82, No. 1, 2009, pp. 96-100.
http://dx.doi.org/10.1007/s00128-008-9510-x

[5]   S. J. Hill, T. A. Arowolo, O. T. Butler, J. M. Cook, M. S. Cresser, C. Harringtone and D. L. Miles, “Atomic Spectrometry Update. Environmental Analysis,” Journal of Analytical Atomic Spectrometry, Vol. 18, No. 2, 2003, pp. 170-202. http://dx.doi.org/10.1039/b212655a

[6]   J. P. Goulle, L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G. Laine, D. Bouige and C. Lacroix, “Metal and Metalloid Multi-Elementary ICP-MS Validation in Whole —Blood, Plasma, Urine and Hair. Reference Values,” Forensic Science International, Vol. 153, No. 1, 2005, pp. 39-44.

[7]   N. Jakubowski, T. Prohaska, L. Rottmann and F. Vanhaecke, “Inductively Coupled Plasmaand Glow Discharge Plasma-Sector Field Mass Spectrometry Part I. Tutorial: Fundamentals and Instrumentation,” Journal of Analytical Atomic Spectrometry, Vol. 26, No. 4, 2011, pp. 693-726. http://dx.doi.org/10.1039/c0ja00161a

[8]   N. Jakubowski, T. Prohaska, F. Vanhaecke, P. H. Roos and T. Lindemann, “Inductively Coupled Plasmaand Glow Discharge Plasma-Sector Field Mass Spectrometry Part II. Applications,” Journal of Analytical Atomic Spectrometry, Vol. 26, No. 4, 2011, pp. 727-757.
http://dx.doi.org/10.1039/c0ja00007h

[9]   K. G. Heumann, S. M. Gallus, G. Radlinger and J. Vogl, “Precision and Accuracy in Isotope Ratio Measurements by Plasma Source Mass Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 13, No. 9, 1998, pp. 1001-1008. http://dx.doi.org/10.1039/a801965g

[10]   W. T. May and H. R. Wiedmeyer, “A Table of Polyatomic Interferences in ICP-MS,” Journal of Analytical Atomic Spectrometry, Vol. 19, 1998, pp. 150-155.

[11]   E. H. Evans and J. J. Giglio, “Interferences in Inductively Coupled Plasma Mass Spectrometry. A Review,” Journal of Analytical Atomic Spectrometry, Vol. 8, No. 1, 1993, pp. 1-18. http://dx.doi.org/10.1039/ja9930800001

[12]   M. Iglesias, N. Gilon, E. Poussel and J-M. Mermet, “Evaluation of an ICP-Collision/Reaction Cell-MS System for the Sensitive Determination of Spectrally Interfered and Non-Interfered Elements Using the Same Gas Conditions,” Journal of Analytical Atomic Spectrometry, Vol. 17, No. 10, 2002, pp. 1240-1247.
http://dx.doi.org/10.1039/b204786c

[13]   R. Wahlen, L. Evans, J. Turner and R. Hearn, “The Use of Collision/Reaction Cell ICP-MS for the Determination of Elements in Blood and Serum Samples,” Spectroscopy, Vol. 20, No. 12, 2005, p. 84.

[14]   I. Feldmann, N. Jakubowski, C. Thomas and D. Stuewer, “Application of Hexapole Collision and Reaction Cell in ICP-MS. Part II Analytical Figures of Merit and First Applications,” Fresenius’ Journal of Analytical Chemistry, Vol. 365, No. 5, 1999, pp. 422-428.
http://dx.doi.org/10.1007/s002160051634

[15]   M. Moldovan, E. M. Krupp, A. E. Holliday and O. X. F. Donard, “High Resolution Sector field ICP-MS and Multicollector ICP-MS as Tools for Trace Metal Speciation in Environmental Studies: A Review,” Journal of Analytical Atomic Spectrometry, Vol.19, No. 7, 2004, pp. 815-822.
http://dx.doi.org/10.1039/b403128h

[16]   D. Beauchemin, “Environmental Analysis by Inductively Coupled Plasma Mass Spectrometry,” Mass Spectrometry Reviews, Vol. 29, No. 4, 2010, pp. 560-92.
http://dx.doi.org/10.1002/mas.20257

[17]   J. S. Becker, “Recent Developments in Isotope Analysis by Advanced Mass Spectrometric Techniques Plenary Lecture,” Journal of Analytical Atomic Spectrometry, Vol. 20, No. 11, 2005, pp. 1173-1184.
http://dx.doi.org/10.1039/b508895j

[18]   F. J. Díaz, M. Mejuto, A. I. Cardona, V. Rodríguez and A. García-álvarez, “Soil Eco-Physiological Indicators from a Coal Mining Area in El Bierzo District (Spain),” EGU General Assembly, Vienna, Vol. 12, 2-7 May 2010, p. 11350.

[19]   M. Mejuto, “Afectación de la Minería del Carbón en las Propiedades Físicas y Químicas de los Suelos de la Cuenca Hidrográfica del río Rodrigatos (El Bierzo, León),” Centro de Investigaciones Energéticas, Medio Ambientales y Tecnológicas (CIEMAT) Press, Madrid Espana, 2012.

[20]   Normas Espanolas Certificadas, “Preparación de muestras para ensayos de suelo,” UNE 103.100, Madrid Espana, 1995.

[21]   D. D. Link, P. J. Walter and H. M. Kingston, “Development and Validation of the New EPA Microwave-Assisted LeachMethod 3051A,” Environmental Science & Technology, Vol. 32, No. 22, 1998, pp. 3628-3632.
http://dx.doi.org/10.1021/es980559n

[22]   X. H. Feng, L. M. Zhai, W. F. Tan, F. Liu and J. Z. He, “Adsorption and Redox Reactions of Heavy Metals on Synthesized Mn Oxide Minerals,” Environmental Pollution, Vol. 147, No. 2, 2007, pp. 366-73.
http://dx.doi.org/10.1016/j.envpol.2006.05.028

[23]   A. Neaman F. Mouélé, F. Trolard and G. Bourrié, “Improved Methods for Selective Dissolution of Mn Oxides: Applications for Studying Trace Element Associations,” Applied Geochemistry, Vol. 19, No. 6, 2004, pp. 973-979. http://dx.doi.org/10.1016/j.apgeochem.2003.12.002

[24]   C. H. Green, D. M. Heil, G. E. Cardon, G. L. Butters and E. F. Kelly, “Solubilization of Manganese and Trace Metals in Soils Affected by Acid Mine Runoff,” Journal of Environmental Quality, Vol. 32, No. 4, 2003, pp. 1323-1334. http://dx.doi.org/10.2134/jeq2003.1323

 
 
Top