MNSMS  Vol.3 No.4 B , October 2013
Atomistic Simulation of Undissociated 60° ; Basal Dislocation in Wurtzite GaN.
Abstract: We have carried out computer atomistic simulations, based on an efficient density functional based tight binding method, to investigate the core configurations of the 60°basal dislocation in GaN wurtzite. Our energetic calculations, on the undissociated dislocation, demonstrate that the glide configuration with N polarity is the most energetically favorable over both the glide and the shuffle sets.
Cite this paper: I. Belabbas, J. Chen, P. Komninou and G. Nouet, "Atomistic Simulation of Undissociated 60&deg ; Basal Dislocation in Wurtzite GaN.," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 4, 2013, pp. 11-16. doi: 10.4236/mnsms.2013.34B003.

[1]   S. Strite, M. E. Lin and H. Morkoç, “Progress and Prospects for GaN and the III-V Nitride Semiconducteors,” Thin Solid Films, Vol. 231, 1992, pp.197-210. doi:10.1016/0040-6090(93)90713-Y

[2]   P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean and J. Massies, “High Internal Electric Field in a Graded-width InGaN/GaN Quantum Well: Accurate Determination by Time-resolved Photoluminescence Spectroscopy,” Applied Physics Letters, Vol. 78, 2001, pp. 1252-1254.

[3]   B. A. Haskel, F. Wu, S. Matsuda, M. D. Craven, P. T. Fini, S. P. DenBaars, J. S. Speck and S. Nakamura, “Structural and Morphological Characteristics of Planar A-plane Gallium Nitride Grown by Hydride Vapor Phase Epitaxy,” Applied Physics Letters, Vol. 83, 2003, pp. 1554-1556. doi:10.1063/1.1604174

[4]   I. Belabbas, P. Ruterana, J. Chen and G. Nouet, “The Atomic and Electronic Structure of Ga-based Nitride Semiconductors,” Philosopical Magazine, Vol. 86, 2006, pp. 2241-2269. doi:10.1080/14786430600651996

[5]   Ph. Komninou, J. Kioseoglou, G. P. Dimitrakopulos, Th. Kehagias and Th. Karakostas, “Partial Dislocations in Wurtzite GaN,” Physica Status Solidi (a), Vol. 202, 2005, pp. 2888-2899. doi:10.1002/pssa.200521263

[6]   I. Belabbas, J. Chen and G. Nouet, “A New Atomistic Model for the Threading Screw Dislocation Core in Wurtzite GaN,” Computational Materials Science, Vol. 51, 2011, pp. 206-216. doi:10.1016/j.commatsci.2011.07.051

[7]   I. Belabbas, A. Béré, J. Chen, S. Petit, M. A. Belkhir, P. Ruterana and G. Nouet, “Atomistic Modeling of the (a+c)-Mixed Dislocation Core in Wurtzite GaN,” Physical Review B, Vol. 75, 2007, pp. 115201-115211. doi:10.1103/PhysRevB.75.115201

[8]   I. Belabbas, M. A. Belkhir, Y. H. Lee, A. Béré, P. Ruterana, J. Chen and G. Nouet, “Local Electronic Structure of Threading Screw Dislocation in GaN Wurtzite,” Computational Materials Science, Vol. 37, 2006, pp. 410-416. doi:10.1016/j.commatsci.2005.11.002

[9]   I. Belabbas, G. P. Dimitrakopulos, J. Kioseoglou, A. Béré, J. Chen, Ph. Komninou, P. Ruterana and G. Nouet, “Energetics of the 30° Shockley Partial Dislocation in Wurtzite GaN,” Superlattices and Microstructures, Vol. 40, 2006, pp. 458-463. doi:10.1016/j.spmi.2006.09.013

[10]   I. Belabbas, J. Chen, M. A. Belkhir, P. Ruterana and G. Nouet, “New Core Configurations of the C-edge Dislocation in Wurtzite GaN,” Physica Status Solidi (c), Vol. 3, 2006, pp. 1733-1737.

[11]   I. Belabbas, J. Chen, M. A. Belkhir, P. Ruterana and G. Nouet, “Abinitio Tight-binding Study of the Core of the Core Structures of the C-edge Dislocation in Wurtzite GaN,” Physica Status Solidi (a), Vol. 203, 2006, pp. 2167-2171. doi:10.1002/pssa.200566003

[12]   I. Belabbas, G. Nouet and Ph. Komninou, “Atomic Core Configurations of the A-screw Basal Dislocation in wurtzite GaN,” Journal of Crystal Growth, Vol. 300, 2007, pp. 212-216. doi:10.1016/j.jcrysgro.2006.11.022

[13]   A. T. Blumenau, J. Elsner, R. Jones, M. I. Heggie, S. Oberg, Th. Frauenheim and PR. Briddon, “Dislocations in Hexagonal and Cubic GaN,” Journal of Physics: Condensed Matter, Vol. 12, 2000, pp. 10223-10233. doi:10.1088/0953-8984/12/49/322

[14]   M. Albrecht, H. P. Strunk, J. L. Weyher, I. Grzegory, S. Porowski and T. Wosinski, “Carrier Recomnination at Single Dislocation in GaN Measured by Cathodoluminescence in a Transmission Electron Microscope,” Journal of Applied Physics, Vol. 92, 2002, pp. 2000-2005. doi:10.1063/1.1490618

[15]   T. Niermann, M. Kocan, M. Roever, D. Mai, J. Malindretos, A. Rizzi and M. Seibt, “High Resolution Imaging of Extended Defects in GaN Using Wave Function Reconstruction,” Physica Status Solidi (a), Vol. 4, 2007, pp. 3010-3014. doi:10.1002/pssc.200675451

[16]   M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai and G. Seifert, “Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties,” Physical Review B, Vol. 58, 1998, pp. 7260-7268. doi:10.1103/PhysRevB.58.7260

[17]   A. Béré and A. Serra, “Atomic Structure of Dislocation Cores in GaN,” Physical Review B, Vol. 65, 2002, pp. 205323-205332. doi:10.1103/PhysRevB.65.205323

[18]   J. P. Hirth and J. Lothe, “Theory of Dislocations,” Wiley, New York, 1982.