JBPC  Vol.2 No.1 , February 2011
Peptoids with aliphatic sidechains as helical structures without hydrogen bonds and collagen/ inverse-collagen type structures
ABSTRACT
Aliphatic homo-polypeptoids of NAla, NVal, NIle and NLeu both in the presence and absence of protecting groups adopt helical structures without hydrogen bonds with Φ, Ψ values of ~ 0, ± 90° with trans amide bonds. These structures are stabilized by carbonyl-carbonyl interactions and characterized by ~ 3.16 residues per turn with a pitch of ~ 6.13 Å. It has been shown that like polyvaline and polyleucine peptides, poly-peptoids can also be exploited for the construction of potential surfactant like molecules by incorporating charged amino acid residues at the N terminal. A single-handed template with Φ, Ψ values of ~ 0, 90° can be attained by incorporating L-leu or L-val at the C-terminal of poly-NIle. Analysis of the simulation results in water as a function of time reveals that the opening of helical structures without hydrogen bonds takes place at sub-picosecond time scale starting from the N-terminal. This leads to the formation of collagen or inverse-collagen type structures (Φ, Ψ ~ -60, 145° and 60, -145° respectively) stabilized by interactions of water molecules with the backbone carbonyl groups.

Cite this paper
nullNandel, F. and Saini, A. (2011) Peptoids with aliphatic sidechains as helical structures without hydrogen bonds and collagen/ inverse-collagen type structures. Journal of Biophysical Chemistry, 2, 37-48. doi: 10.4236/jbpc.2011.21006.
References
[1]   Latham, P.W. (1999) Therapeutic Peptides Revisited. Nature Boitechnology, 17, 755-757. doi:10.1038/11686

[2]   Patch, J.A. and Barron, A.E. (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Current Opinion in Chemical Biology, 6(6), 872-877. doi:10.1016/S1367-5931(02)00385-X

[3]   Miller, S.M., Simon, R.J., NG S., Zuckermann, R.N., Kerr, J.M. and Moos, W.H. (1995) Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid and N-substituted glycine peptides and peptoid oligomers. Drug Developement Research, 35(1), 20-32. doi:10.1002/ddr.430350105

[4]   Zuckermann, R.N., Kerr, J.M., Kent, S.B.H. and Moos, W.H. (1992) Efficient method for the preparation of peptoids [oligo (N-substituted) glycines] by submonomer solid-phase synthesis. Journal of American Chemical Society, 114(26), 10646-10647. doi:10.1021/ja00052a076

[5]   Zuckermann, R.N., Martin, E.J., Spellmeyer, D.C., Stauber, G.B., Shoemaker, K.R., Kerr, J.M., Flgliozzi, G.M., Goff, D.A., Siani, M.A., Simon, R.J., Banville, S.C., Brown, E.G., Wang, L., Richter, L.S. and Moos, W.H. (1994) Discovery of nanomolar ligands for 7-transmembrane G-Protein coupled receptors from a diverse (N-substituted) glycine peptoid library. Journal of Medicinal Chemistry, 37(17), 2678-2685. doi:10.1021/jm00043a007

[6]   Gibbons, J.A., Hancock, A.A., Vitt, C.R., Knepper, S., Buckner, S.A., Brune, M.E., Milicic, I., Kerwin, J.F., Richter, L.S., Taylor, E.W., Spear, K.L., Zuckermann, R.N., Spellmeyer, D.C., Braeckman, R.A. and Moos, W.H. (1996) Pharmacologic characterization of CHIR 2279, an N-substituted glycine peptoid with high-affinity binding for alpha 1-adrenoceptors. Journal of Pharmacology and Experimental Therapeutics, 277(2), 885-899.

[7]   NG, S., Goodson, B., Ehrhardt, A., Moos, W.H., Siani, M. and Winter, J. (1999) Combinatorial discovery process yields antimicrobial peptoid. Bioorganic and Medicinal Chemistry, 7(9), 1781-1785. doi:10.1016/S0968-0896(99)00132-7

[8]   Garcia-Martinez, C., Humet, M., Planells-Cases, R., Gomis, A., Caprini, M., Viana, F., Pena, E.D, Sanchez-Baeza, F., Carbonell, T., Felipe, C.D., Perez-Paya, E., Belmonte, C., Messeguer, A. and Ferre-Montiel, A. (2002) Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proceedings of the National Academy of Sciences USA, 99(4), 2374-2379. doi:10.1073/pnas.022285899

[9]   Heizmann, G., Hildebrand, P., Tanner, H., Ketterer, S., Panksy, A., Froidevaux, S., Beglinger, C. and Eberle, A.N. (1999) A combinatorial peptoid library for the identification of novel MSH and GRP/Bombesin receptor ligands. Journal of Receptors and Signal Transduction Research, 19(1-4), 449-466. doi:10.3109/10799899909036664

[10]   D.A. Thompson, B.X. Chai, H.L.E. Rood, M.A. Siani, N.R. Douglas, I. Grantiz and G.L. Millhauser, “Peptoid mimetics of agouti related protein”, Bioorganic and Medicinal Chemistry Letters, Vol. 13, No. 8, 2003, pp. 1409-1413. doi:10.1016/S0960-894X(03)00164-1

[11]   R. Statz, J. P. Park, N. P. Chongsiriwatana, A. E. Barron and P. B. Messersmith, “Surface-immobilized antimicrobial peptoids”, Biofouling, Vol. 24, No. 6, 2008, pp. 439-448. doi:10.1080/08927010802331829

[12]   N.J. Brown, C.W. Wu, S.L. Seurynck-Servoss and A.E. Barron, “Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C”, Biochemistry, Vol. 47, No. 6, 2008, pp. 1808-1818. doi:10.1021/bi7021975

[13]   S.L. Seurynck-Servoss, N.J. Brown, M.T. Dohm, C.W. Wu and A.E. Barron, “Lipid composition greatly affects the in vitro surface activity of lung surfactant protein mimics”, Colloids & Surfaces B: Biointerfaces, Vol. 57, No. 1, 2007, pp. 37-55. doi:10.1016/j.colsurfb.2007.01.001

[14]   S.L. Seurynck-Servoss, M.T. Dohm and A.E. Barron, “Effects of including an N-terminal insertion region and arginine-mimetic side chains in helical peptoid analogues of lung surfactant protein B”, Biochemistry, Vol. 45, No. 39, 2006, pp. 11809-11811. doi:10.1021/bi060617e

[15]   A.M. Rouhi, “A peptoid promise: Synthetic lung surfactant mimics may widen access to treatment of respiratory disease”, Chemical and Engineering News, Vol. 79, 2001, pp. 50-51. doi:10.1021/cen-v079n038.p050

[16]   S.L. Seurynck, J.A. Patch and A.E. Barron, “Simple, helical peptoid analogs of lung surfactant protein B”, Chemistry and Biology, Vol. 12, No. 1, 2004, pp. 77-88. doi:10.1016/j.chembiol.2004.10.014

[17]   W. Wu, S.L. Seurynck, K.Y.C. Lee and A. E. Barron, “Helical peptoid mimics of lung surfactant protein C”, Chemistry and Biology, Vol. 10, No. 11, 2003, pp. 1057-1063. doi:10.1016/j.chembiol.2003.10.008

[18]   T.M. Rossa, Zuckermann, R.N., C.R. William and H. Frey, “Intranasal administration delivers peptoids to the rat central nervous system”, Neuroscience Letters, Vol. 439, No. 1, 2008, pp. 30-33. doi:10.1016/j.neulet.2008.04.097

[19]   A.R. Statz, R.J. Meagher, A.E. Barron and P.B. Messersmith, “New peptidomimetic polymers for antifouling surfaces”, Journal of the American Chemical Society, Vol. 127, No. 22, 2005, pp. 7972-7973. doi:10.1021/ja0522534

[20]   R. Statz, A.E. Barron and P.B. Messersmith, “Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: Effect of side-chain chemistry”, Soft Matter, Vol. 4, 2008, pp. 131-139. doi:10.1039/b711944e

[21]   Yoo and K. Kirshenbaum, “Peptoid architectures: Elaboration, actuation and application”, Current Opinion in Chemical Biology, Vol. 12, No. 6, 2008, pp. 714-21. doi:10.1016/j.cbpa.2008.08.015

[22]   T.S. Ryge, N. Frimodt-M?ller and P.R. Hansen, ” Antimicrobial Activities of Twenty Lysine-Peptoid Hybrids against Clinically Relevant Bacteria and Fungi”, Chemotherapy, Vol 54, No. 2, 2008, pp. 152-156. doi:10.1159/000119707

[23]   Daelemans, D. Schols, M. Witvrouw, C. Pannecouque, S. Hatse, S.V. Dooren, F. Hamy, T. Klimkait, E. Clercq and A.M. Vandamme, “A second target for the peptoid Tat/transactivation response element inhibitor CGP64222: Inhibition of human immunodeficiency virus replication by blocking CXC-chemokine receptor 4-mediated virus entry”, Molecular Pharmacology, Vol. 57, No. 1, 2000, pp. 116-124.

[24]   F. Hamy, E.R. Felder, G. Heizmann, J. Lazdins, F. Aboul-Ela, G. Varani, J. Karn and J. Klimkait, “An inhibitor of the Tat/TAR interaction that effectively suppresses HIV-1 replication”, Proceedings of the National Academy of Sciences USA, Vol. 94, No. 8, 1997, pp. 3548-3553. doi:10.1073/pnas.94.8.3548

[25]   J.A. Patch and A.E. Barron, “Helical peptoid Mimics of Magainin-2 amide”, Journal of American Chemical Society, Vol. 125, No. 40, 2003, pp. 12092-12093. doi:10.1021/ja037320d

[26]   N.P. Chongsiriwatana, J.A. Patch, A.M. Czyzewski, M.T. Dohm, A. Ivankin, D. Gidalevitz, Zuckermann, R.N. and A.E. Barron, “Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides”, Proceedings of the National Academy of Sciences USA, Vol. 105, No. 8, 2008, pp. 2794-2799. doi:10.1073/pnas.0708254105

[27]   S.A. Fowler, R. Luechapanichkul and H.E. Blackwell, “Structure-function relationships in peptoids: Recent advances toward deciphering the structural requirements for biological function”, Journal of Organic Chemistry, Vol. 74, No. 4, 2009, pp. 1440-1449. doi:10.1021/jo8023363

[28]   W. Wu, K. Kirshenbaum, T.J. Sanborn, K. Huang, Zuckermann, R.N., A.E. Barron, J.A. Patch and K.A. Dill, “Structural and spectroscopic studies of peptoid oligomers with ?-chiral, aliphatic side chains”, Journal of American Chemical Society, Vol. 125, No. 44, 2003, pp. 13525-13530. doi:10.1021/ja037540r

[29]   G.L. Butterfoss, P.D. Renfren, B. Kuhlman and K.A. Kirshenbaum, “Preliminary survey of the peptoid folding landscape”, Journal of American Chemical Society, Vol. 131, No. 46, 2009, pp. 16798-16807. doi:10.1021/ja905267k

[30]   W. Wu, T.J. Sanborn, Zuckermann, R.N. and A.E. Barron, “Peptoid oligomers with α-chiral, aromatic side chains: effect of chain length on secondary structure”, Journal of American Chemical Society, Vol. 123, No.13, 2001, pp. 2958-2963. doi:10.1021/ja003153v

[31]   W. Wu, T.J. Sanborn, K. Huang, Zuckermann, R.N. and A.E. Barron, “Peptoid oligomers with ?-chiral, aromatic side chains: Sequence requirements for the formation of stable peptoid helices”, Journal of American Chemical Society, Vol. 123, No. 28, 2001, pp. 6778-6784. doi:10.1021/ja003154n

[32]   B. Pullman and A. Pullman, “Molecular orbital calculations on the conformations of amino acid residues of proteins”, Advances in Protein Chemistry, Vol. 28, 1974, pp. 347-526. doi:10.1016/S0065-3233(08)60233-8

[33]   R.P. Lawrence and C. Thompson, “The boron analogue of glycine: A theoretical investigation of structure and properties”, Journal of Molecular Structure: Theochem, Vol. 88, No. 1-2, 1982, pp. 37-43. doi:10.1016/0166-1280(82)80105-X

[34]   C. Aleman and J. Casanovas, “Ab initio SCF and force-field calculations on low-energy conformers of 2-acetylamino-2,N-dimethylpropanamide”, Journal of the Chemical Society of Perkin Transactions, Vol. 2, 1994, pp. 563-568. doi:10.1039/p29940000563

[35]   C. Aleman and J. Casanovas, “Molecular conformational analyses of dehydroalanine analogues”, Biopolymers, Vol. 36, No. 1, 1995, pp. 71-82. doi:10.1002/bip.360360107

[36]   F.S. Nandel and B. Khare, “Conformation of peptides constructed from achiral amino acid residues Aib and ?ZPhe: Computational study of the effect of L/D- Leu at terminal positions”, Biopolymers, Vol. 77, No. 1, 2005, pp. 63-73. doi:10.1002/bip.20128

[37]   F.S. Nandel, N. Malik, B. Singh and D. V. S. Jain, “Conformational structure of peptides containing dehydroalanine. Formation of beta bend ribbon structure”, International Journal of Quantum Chemistry, Vol. 72, No. 1, 1999, pp. 15-23. doi:10.1002/(SICI)1097-461X(1999)72:1<15::AID-QUA2>3.0.CO;2-2

[38]   F.S. Nandel, N. Malik, B. Singh and M. Virdi, “Designing of peptides with left handed helical structure by incorporating the unusual amino acids”, Indian Journal of Biochemistry and Biophysics, Vol. 36, No. 3, 1999, pp. 195-203.

[39]   S.J. Weiner, P.A. Kollman, D.T. Nguyen and D.A. Case, “An all atom force field for simulations of proteins and nucleic acids”, Journal of Computational Chemistry, Vol. 7, No. 2, 1986, pp. 230-252. doi:10.1002/jcc.540070216

[40]   K. Mohle, H.J. Hoffman, “Secondary structure formation in N-substituted peptides”, J. Peptide Research, Vol. 51, No. 1, 1998, pp. 19-28. doi:10.1111/j.1399-3011.1998.tb00412.x

[41]   A.A. Adzhubei, F. Eisenmenger, V.G. Tumanyan, M. Zinke and N. G. Esipova, “Third type of secondary structure: Noncooperative mobile conformation. Protein Data Bank analysis”, Biochemical and Biophysical Research Communications, Vol. 146, No. 3, 1987, pp. 934-938. doi:10.1016/0006-291X(87)90736-4

[42]   A. Aduzbei and J.E. Sternberg, “Left-handed poly- proline II helices commonly occur in globular proteins”, Journal of Molecular Biology, Vol. 229, No. 2, 1993, pp. 472-493. doi:10.1006/jmbi.1993.1047

[43]   J. Lipinski, “Modified all-valence INDO/spd method for ground and excited state properties of isolated molecules and molecular complexes”, International Journal of Quantum Chemistry, Vol. 34, No. 5, 1988, pp. 423-435. doi:10.1002/qua.560340504

[44]   van der Spoel, E. Lindahl, B. Hess, A.R. van Buuren, E. Apol, P.J. Meulenhoff, D.P. Tieleman, A.L. T.M. Sijbers, K.A. Feenstra, R. van Drunen and H. J.C. Berendsen, Gromacs User Manual version 3.3, 2005.

[45]   A.W. Schuettelkopf and D.M.F. van Aalten, “PRODRG -a tool for high-throughput crystallography of protein-ligand complexes” Acta Crystallographica, Vol. D60, No. 8, 2004, pp. 1355-1363.

[46]   W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott and I.G. Tironi, “Biomolecular Simulation: The GROMOS96 manual and user guide. Z¨urich, Switzerland: Hochschulverlag AG an der ETH Zürich, 1996.

[47]   N.H. Shah, G.L. Butterfoss, K. Nguyen, B. Yoo, R. Bonneau, D.L. Rabenstein and K. Kirshenbaum, “Oligo (N-aryl glycines): A new twist on structural peptoids”, Journal of American Chemical Society, Vol. 130, No. 49, 2008, pp. 16622-16632. doi:10.1021/ja804580n

[48]   Q. Sui, D. Borchardt and D.L. Rabenstein, “Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids”, Journal of American Chemical Society, Vol. 129, No. 39, 2007, pp. 12042-12048. doi:10.1021/ja0740925

[49]   J.C. Berendsen, J.P. M. Postma, A. DiNola and J.R. Haak, “Molecular dynamics with coupling to an external bath”, Journal of Chemical Physics, Vol. 81, No. 8, 1984, pp. 3684-3690. doi:10.1063/1.448118

[50]   Hess, H. Bekker, H.J.C. Berendsen and J.G. E.M. Fraaije, “LINCS: A linear constraint solver for molecular simulations”, Journal of Computational Chemistry, Vol. 18, No. 12, 1997, pp. 1463-1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L

[51]   J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren and J. Hermans, “Interaction models for water in relation to protein hydration” In: Intermolecular Forces. Dordrecht: D Reidel Publishing Company, 1981, pp. 331-342.

[52]   Y.M. Song, P. Yoonkyung, S.S. Lim, Y. Sung-Tae, W. Eun-Rhan, P. Il-Seon, J.S. Lee, J.I. Kim, H. Kyung-Soo, K. Yangmee and S.U. Shin, “Cell selectivity and Mechanism of action of antimicrobial model peptides containing peptoid residues”, Biochemistry, Vol. 44, No. 36, 2005, pp. 12094-106. doi:10.1021/bi050765p

[53]   Allen, H., C.A. Baalham, J.P.M. Lommerse and P.R. Raithby, “Carbonyl-carbonyl interactions can be competitive with hydrogen bonds”, Acta Crystallographica, Vol. B54, No. 3, 1998, pp. 320-329.

[54]   Allen, H., J.E. Dacies, J.J. Galloy, O. Johnson, O. Kennard, C.F. Macrae, E.M. Mitchell, G.F. Mitchell, J.M. Smith and D.G. Watson, “The development of version 3 and 4 of the Cambridge Structural Database System”, Journal of Chemical Information Computer Science, Vol. 31, No. 2, 1991, pp. 187-204. doi:10.1021/ci00002a004

[55]   P.H. Maccallum, R. Poet and E.J. Milner-White, “Coulombic interactions between partially charged main-chain atoms not hydrogen-bonded to each other influence the conformations of alpha-helices and anti-parallel beta-sheet. A new method for analyzing the forces between hydrogen bonding groups in proteins includes all the Coulombic interactions”, Journal of Molecular Biology, Vol. 248, No. 2, 1995, pp. 361-373. doi:10.1016/S0022-2836(95)80056-5

[56]   P.H. Maccallum, R. Poet and E.J. Milner-White, “Coulombic attractions between partially charged main-chain atoms stabilize the right-handed twist found in most beta-strands”, Journal of Molecular Biology, Vol. 248, No. 2, 1995, pp. 374-384. doi:10.1016/S0022-2836(95)80057-3

[57]   M. Deane, F.Allen, H., R. Taylor and T.L. Blundell, “Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid”, Protein Engineering, Vol. 12, No. 12, 1999, pp. 1025-1028. doi:10.1093/protein/12.12.1025

[58]   F.S. Nandel and H. Kaur, “Effect of terminal achiral and chiral residues on the conformational behaviour of poly ?zPhe and analysis of various interactions”, Indian Journal of Biochemistry and Biophysics, Vol. 40, No. 4, 2003, pp. 265-273.

[59]   F.S. Nandel, H. Kaur, N. Malik, N. Shankar and D.V.S. Jain, “Conformational study of peptides containing dehydrophenylalanine: Helical structures without hydrogen bonds”, Indian Journal of Biochemistry and Biophysics, Vol. 38, No. 6, 2001, pp. 417-425.

[60]   T.M. Head-Gordon and M.J. Frisch, C.L. Brooks III, J.A. Pople, “Theoretical study of blocked glycine and alanine peptide analogs”, Journal of American Chemical Society, Vol. 113, No. 16, 1991, pp. 5989-5997. doi:10.1021/ja00016a010

[61]   Park, S.A. Teichmann, T. Hubbard and C. Chothia, “Intermediate sequences increase the detection of homology between sequences”, Journal of Molecular Biology, Vol. 273, No. 1, 1997, pp. 349-354. doi:10.1006/jmbi.1997.1288

[62]   F.S. Nandel and R. Jaswal, “New type of helix and 27 ribbon structure formation in poly ?Leu peptides: Construction of a single-handed template”, Biomacromolecules, Vol. 8, No. 10, 2007, pp. 3093-3101. doi:10.1021/bm700504h

[63]   Y. Demizu, N. Yamagata, Y. Sato, M. Doi, M. Tanaka, H. Okuda and M. Kurihara, “Controlling the helical screw sense of peptides with C-terminal L-valine”, Journal of Peptide Science, Vol. 16, No. 3, 2010, pp. 153-158.

[64]   Z. Liu, K. Chen, A. Ng, Z. Shi, R.W. Woody and N.R. Kallenbach, “Solvent dependence of PII conformation in model alanine peptides”, Journal of American Chemical Society, Vol. 126, No. 46, 2004, pp. 15141-15150. doi:10.1021/ja047594g

[65]   B.W. Chellgren and T.P. Creamer, “Effects of H2O and D2O on polyproline II helical structure”, Journal of American Chemical Society, Vol. 126, No. 45, 2004, pp. 14734-14735. doi:10.1021/ja045425q

[66]   Voet, J.G. Voet and C.W. Pratt, “Fundamentals of Biochemistry”, John Wiley and Sons, Inc., 2008.

[67]   F.S. Nandel, A. Ahluwalia and H. Kaur, “A conformational structure of the amphipathic peptide insecticide L-KALA”, International Journal of Quantum Chemistry, Vol. 55, No. 1, 1995, pp. 61-69. doi:10.1002/qua.560550109

[68]   R. Desiraju and T. Steiner, ”The Weak Hydrogen Bond”, In: Structural Chemistry and Biology, Oxford Science Publications, 1999.

[69]   C. Baldauf, R. Günther and H.J. Hofmann, “Helices in peptoids of α- and β-peptides”, Physical Biology, Vol. 3, No. 1, 2006, pp. S1-S9. doi:10.1088/1478-3975/3/1/S01

 
 
Top