WJNST  Vol.3 No.4 , October 2013
Potential Correlations between Unexplained Experimental Observables and Hot Projectile-Like Fragments in Primary Interactions above ECM/u ≈ 150 MeV
ABSTRACT

An enhanced neutron production and an enhanced nuclear destruction due to secondary fragments have been observed in very thick targets irradiated with high energy ions. This enhancement is beyond theoretical calculations and it is an unresolved problem. It is observed only when primary ion interactions exceed an energy threshold (ECM/u ≈ 150 MeV). Investigations using nuclear emulsions for very high-energy nuclear reactions suggest that two distinctly different classes of relativistic projectile-like fragments are emitted in primary interactions: a “cool” channel with a temperature of (T(p)cool ≈ 10 MeV), and a “hot” channel with (T(p)hot ≈ 40 MeV. This second reaction class may induce the above mentioned enhanced reactions of secondary fragments, thus being responsible for unresolved problems. This assumption should be studied in further experiments. Nuclear interactions of secondary particles in thick targets are of interest, in particular in view of radiation protection needs for high energy and high intensity heavy ion accelerators. Many basic ideas of this paper go back to the late Professor E. Schopper (Frankfurt).


Cite this paper
E. Ganssauge, W. Westmeier and R. Brandt, "Potential Correlations between Unexplained Experimental Observables and Hot Projectile-Like Fragments in Primary Interactions above ECM/u ≈ 150 MeV," World Journal of Nuclear Science and Technology, Vol. 3 No. 4, 2013, pp. 155-161. doi: 10.4236/wjnst.2013.34026.
References
[1]   W. Westmeier, R. Brandt, S. R. Hashemi-Nezhad, R. Odoj, A. N. Sosnin, W. Ensinger and M. Zamani-Valasiadou, “Correlations in Nuclear Interactions between ECM/u and Unexplained Experimental Observables,” World Journal of Nuclear Science and Technology, Vol. 2, 2012, pp. 125-132. http://dx.doi.org/10.4236/wjnst.2012.24018

[2]   S. R. Hashemi-Nezhad, M. Zamani -Valasiadou, M. I. Krivopustov, R. Brandt, W. Ensinger, R. Odoj and W. Westmeier, “Neutron Production in Thick Targets Irradiated with High Energy Ions,” Physics Research International, Vol. 2011, 2011, Article ID: 128429.

[3]   R. Brandt, V. A. Ditlov, K. K. Dwivedi, W. Ensinger, E. Ganssauge, Guo Shi-Lun, M. Haiduc, S. R. Hashemi-Nezhad, H. A. Khan, M. I. Krivopustov, R. Odoj, E. A. Pozharova, V. A. Smirnitzki, A. N. Sosnin, W. Westmeier and M. Zamani-Valasiadou, “Interactions of Relativistic Heavy Ions in Thick Heavy Element Targets and Some Unresolved Problems,” Physics of Particles and Nuclei, Vol. 39, No. 2, 2008, pp. 259-285.

[4]   H. G. Baumgardt, E. M. Friedlander and E. Schopper, “Evidence for Two Different Reaction Mechanism in Relativistic Heavy-Ions Collisions,” Journal of Physics G: Nuclear and Particle Physics, Vol. 7, 1981, pp. L175-L181. http://dx.doi.org/10.1088/0305-4616/7/8/004

[5]   E. Ganssauge, “Anomalons,” Proceedings of International School of Physics “Enrico Fermi,” Nuclear Structure and Heavy-Ion Dynamics, North-Holland Publications, 1984, pp. 551-582.

[6]   C. F. Powell, P. H. Fowler and D. H. Perkins, “The Study of Elementary Particles by the Photographic Method. An Account of the Principal Techniques and Discoveries Illustrated by an Atlas of Photomicrographs,” Pergamon Press Ltd., London, New York, 1959.

[7]   E. Ganssauge, H. Kallies, B. Dressel, Ch. Müller and W. Schulz, “Two Distinct Classes of Alpha Particles and a Possible Correlation of Anomalously Short Mean Free Path with the Cold Component,” Journal of Physics G: Nuclear and Particle Physics, Vol. 11, 1985, pp. L139-L142. http://dx.doi.org/10.1088/0305-4616/11/8/004

[8]   H. Kallies, “Zum Verhalten von Projektilfragmenten der Ladung Z = 2 bei Relativistischen Kern-Kern-Stossen in Kernspuremulsionen,” PhD Thesis, Fachbereich Physik, Philipps-Universitat, Marburg, 1987 (unpublished).

[9]   R. R. Joseph, I. D. Ojha, S. K. Tulit, V. S. Bhatia, M. Kaur, I. S. Mittra, S. S. Sahota, K. B. Bhalla, A. Bharti, S. Mookerjee, S. Kitroo and N. K. Rao, “Two Source Emission of Relativistic Alpha-Particles in 40Ar-Emulsion Collisions,” Journal of Physics G: Nuclear and Particle Physics, Vol. 15, 1989, pp. 1805-1814.
http://dx.doi.org/10.1088/0954-3899/15/12/007

[10]   M. M. Aggarwal, K. B. Bhalla, G. Das and P. L. Jain, “Angular Distributions of Relativistic Alpha Particles in Heavy-Ion Collisions,” Physical Review C, Vol. 27, 1983, pp. 640-649. http://dx.doi.org/10.1103/PhysRevC.27.640

[11]   E. M. Friedlander and A. Friedmann, “Frequency Distributions of Heavy Prongs from High-Energy Stars in Nuclear Emulsions,” Nuovo Cimento A, Vol. 52, 1967, pp. 912-917. http://dx.doi.org/10.1007/BF02738852

[12]   L. Szilard, “über die Entropieverminderung in Einem Thermodynamischen System bei Eingriffen Intelligenter Wesen,” Zeitschrift für Physik, Vol. 53, 1929, pp. 840-866. http://dx.doi.org/10.1007/BF01341281

[13]   E. Teller, “Memoires (a Twentieth Century Journey in Science and Politics),” Perseus Publishing, 2001, Lib. of Congress, p. 111.

[14]   W. Westmeier, R. Brandt and S. Tyutyunnikov, “Suggested Investigations Concerning Unresolved Experimental Observations,” XXI International Baldin Seminar on High Energy Physics Problems, 10-15 September 2012, Dubna.

 
 
Top