IJG  Vol.4 No.8 , October 2013
Some Notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu Alkaline Complexes, Southern Mongolia
ABSTRACT

Volcanic-plutonic alkaline complexes from Lugiin Gol, Mushgai Khudag and Bayan Khoshuu, southern Mongolia (244, 139 and 131 Ma, respectively) occur within grabens in E-W lineaments. They are represented by syenitic rock-types (silica undersaturated to slightly silica oversaturated) potassic rocks and are associated to stockworks of carbonatitic veins, dykes and so on. Geochemical characteristics and isotope systematics point to a veined mantle source particularly enriched in LILE and LREE. The carbonatitic veins show high contents of Ba, Sr, Th and REE and are suitable as potential ore deposits.


Cite this paper
M. Baatar, G. Ochir, J. Kynicky, S. Iizumi and P. Comin-Chiaramonti, "Some Notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu Alkaline Complexes, Southern Mongolia," International Journal of Geosciences, Vol. 4 No. 8, 2013, pp. 1200-1214. doi: 10.4236/ijg.2013.48114.
References
[1]   B. A. Baskina, I. K. Volchanskaya, V. I. Kovalenko, et al., “Potassic Alkaline Volcanic-Plutonic Complex of Mushgai Khudag in South Mongolia and Related Mineralization,” Sovetskaya Geologiya, No. 4, 1978, pp. 86-99 (in Russian).

[2]   V. A. Baskina, I. K. Volchanskaya, V. I. Kovalenko, V. S. Samojlov, N. V. Vladykin, A. V. Goreglad, O. D. Suetenko and V. F. Shuvalov, “The Potassic Alkaline Volcanic-Plutonic Massif at Mushugai Khuduk in South Mongolia and Related Mineralization,” Sovetskaya Geologiya, Vol. 4, 1978, pp. 86-99 (in Russian).

[3]   V. S. Samoilov and V. I. Kovalenko, “Complexes of Alkaline Rocks and Carbonatites in South Mongolia,” Nauka, Vol. 35, 1983, p. 196 (in Russian).

[4]   D. Batbold, “Mineralogy of the Carbonatite from the Lugiin Gol Alkaline Pluton, South Mongolia,” Mongolian Geoscientist, Vol. 8, 1998, p. 37.

[5]   Kh. Enkhtuvshin, “A Petrological Study on the Late Mesozoic and Cenozoic Volcanic Rocks of the Mongolian Plateau,” Master Thesis, Shimane University, 1995, p. 119.

[6]   O. Gerel, B. Munkhtengel, H. Enkhtuvshin and D. Batbold, “Petrology and Geochemistry of the Mushgai Khudag Volcanic-Plutonic Complex,” Geology, Vol. 4, 2001, pp. 51-58 (in Monglian).

[7]   I. A. Andreeva, V. I. Kovalenko and V. B. Naumov, “Origin, Magma Content, and Genesis of Silicate Magma of Alkaline Carbonatite-Bearing Complex of Mushgai Khudag, South Mongolia,” Petrology, Vol. 9, 2001, pp. 563-582 (in Russian).

[8]   Q.-R. Meng, “What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract?” Tectonophysics, Vol. 369, No. 3-4, 2003, pp. 155-174.
http://dx.doi.org/10.1016/S0040-1951(03)00195-1

[9]   J. V. Amory, M. S. Hendrix, M. Lamb, A. M. Keller, G. Badarch and O. Tomurtogoo, “Permian Sedimentation and Tectonics of Southern Mongolia. Implications for a Time-Transgressive Collision with North China,” Geological Society of America, Abstracts with Program, Vol. 26, No. 7, 1994, p. 242.

[10]   C. M. Han, M. Sun, S. F. Lin, H. L. Chen, Z. L. Li and J. L. Li, “NW China: Implications for the Tectonic Evolution of Central Asia,” Journal of Asian Earth Sciences, Vol. 32, No. 2-4, 2008, pp. 102-117.
http://dx.doi.org/10.1016/j.jseaes.2007.10.008

[11]   J. Kynicky and P. Samec, “Hydrothermally-Metasomatic and Exsolution-Like Mineralization of the Carbonatites from the Selected Localities at Gobi,” Mongolian Geoscientist, Vol. 27, 2005, pp. 52-56.

[12]   D. Batbold, “Mineralogy of the Carbonatite from the Lugiin Gol Alkaline Pluton, South Mongolia,” Master Thesis, Shimane University, Matsue, 1997, p. 210.

[13]   V. I. Kovalenko, V. V. Yarmolyuk, I. A. Andreeva, N. A. Ashikhmina, A. M. Kozlovsky, E. A. Kudryashova, V. A. Kuznetsov, E. N. Listratova, D. A. Lykin and A. V. Nikiforov, “Part 2. Magma Types and Their Source in the History of the Earth. Rare Metal Magmatism: Rock Associations, Content and Magma Sources, Geodynamic Environment,” M. IGEM RAN, 2006, p. 280.

[14]   J. Kynicky, “Petrology of the Carbonatites from the Selected Localities at Gobi,” Master Thesis, Masyryk University, Brno, 2002, p. 78.

[15]   Japan International Cooperation Agency and Metal Mining Agency of Japan, “Report on the Mineral Exploration in Uudam-Tal Area,” Mongolian People’s Republic (Phase I), 1992.

[16]   A. Streckeisen, “To Each Plutonic Rock Its Proper Name,” Earth Science Reviews, Vol. 12, No. 1, 1976, pp. 1-33.
http://dx.doi.org/10.1016/0012-8252(76)90052-0

[17]   R. W. Le Maitre, Ed., “A Classification of Igneous Rocks and Glossary of Terms,” Oxford, Blackwell, 1989, p. 193.

[18]   J. Kynicky, C. Xu, A. R. Chakhmouradian, E. Reguir, H. Cihlárová and M. Brtnicky, “REE Mineralization of High Grade REE-Ba-Sr and REE-Mo Deposits in Mongolia and China,” Mineralogical Magazine (Goldschmidt Abstracts), Vol. 75, 2011, p. 1260.

[19]   J. Kynicky, A. R. Chakhmouradian, C. Xu, M. Vasinová, M. Brtnicky and M. Smith, “Origin and Evolution of the Lugiin Gol Carbonatites (Southern Mongolia) and Associated Rare-Earth Mineralization,” Ore Geology Reviews, Vol. 53, 2013, in Print.

[20]   J. Kynicky, “Primary and Secondary Minerals of Carbonatites of South Mongolia,” Mineral, Vol. 11, 2003, pp. 57-61.

[21]   J. Kynicky, “Carbonatites of South Mongolia,” Dissertation Thesis, Mendel University, Brno, 2006, p. 181.

[22]   P. Comin-Chiaramonti, C. B. Gomes, A. Cundari, F. Castorina and P. Censi, “A Review of Carbonatitic Magmatism in the Paraná-Angola-Etendeka (Pan) System,” Periodico di Mineralogia Ezio Callegari, Vol. 76, 2007, pp. 25-78.

[23]   M. J. Le Bas and R. W. Le Maitre, A. Streckeisen and B. Zanettin, “A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram,” Journal of Petrology, Vol. 27, No. 3, 1986, pp. 745-750.
http://dx.doi.org/10.1093/petrology/27.3.745

[24]   E. A. K. Middlemost, “Naming Materials in the Magma Igneous System,” Earth-Science Review, Vol. 37, No. 3-4, 1994, pp. 215-224.
http://dx.doi.org/10.1016/0012-8252(94)90029-9

[25]   L. Beccaluva, M. Barbieri, H. Born, P. Brotzu, M. Coltorti, A. Conte, C. Garbarino, C. B. Gomes, G. Macciotta, L. Morbidelli, E. Ruberti, F. Siena and G. Traversa, “Fractional Crystallization and Liquid Immiscibility Processes in the Alkaline-Carbonatite Complex of Juquiá (Sao Paulo, Brazil),” Journal of Petrology, Vol. 33, No. 6, 1992, pp. 1371-1404. http://dx.doi.org/10.1093/petrology/33.6.1371

[26]   E. Ruberti, F. Castorina, P. Censi, P. Comin-Chiaramonti, C. B. Gomes, P. Antonini and F. Andrade, “The Geochemistry of the Barra do Itapirapua Carbonatite (Ponta Grossa Arch, Brazil): A Multiple Stockwork,” Journal of South America Earth Sciences, Vol. 15, No. 2, 2002, pp. 215-228.
http://dx.doi.org/10.1016/S0895-9811(02)00031-7

[27]   T. N. Irvine and W. R. A. Baragar, “A Guide to the Chemical Classification of the Common Volcanic Rocks,” Canadian Journal of Earth Sciences, Vol. 8, No. 5, 1971, pp. 523-548. http://dx.doi.org/10.1139/e71-055

[28]   R. W. Le Maitre, “Some Problems of the Projection of Chemical Data into Mineralogical Classifications,” Contributions to Mineralogy and Petrology, Vol. 56, No. 2, 1976, pp. 181-189.
http://dx.doi.org/10.1007/BF00399603

[29]   A. Streckeisen, “IUGS Subcommission on the Systematic of Igneous Rocks,” Neues Jahrbuch für Mineralogie, Abhandungen, Vol. 143, 1978, pp. 1-14.

[30]   G. E. R. Gomes, C. B. Comin-Chiaramonti and P. Hydrothermal, “REE Fluorocarbonatite Mineralization at Barra do Itapirapua, a Multiple Stockwork Carbonatite, Southern Brazil,” Can Mineral, Vol. 46, 2008, pp. 901-914.
http://dx.doi.org/10.3749/canmin.46.4.901

[31]   S.-S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” In: A. D. Saunders and M. J. Norry, Eds., Magmatism in the Ocean Basinsi Geological Society of London Sp., Vol. 42, 1989, pp. 313-345.

[32]   P. Comin-Chiaramonti and C. B. Gomes, Eds., “Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform,” Edusp/Fapesp, Sao Paulo, 2005, p. 757.

[33]   S. F. Foley, “Petrological Characterization of the Source Components of Potassic Magmas: Geochemical and Experimental Constraints,” Lithos, Vol. 28, No. 3-6, 1992, pp. 187-204.

[34]   S. F. Foley, “Vein Plus Wall-Rock Melting Mechanism in the Lithosphere and Origin of Potassic Alkaline Magmas,” Lithos, Vol. 28, No. 3-6, 1992, pp. 435-453.
http://dx.doi.org/10.1016/0024-4937(92)90018-T

[35]   W. V. Boynton, “Cosmochemistry of the Rare Earth Elements: Meteorite Studies,” In: P. Henderson, Ed., Rare Earth Element Geochemistry, Elsevier, Amsterdam, 1984, pp. 63-114.
http://dx.doi.org/10.1016/B978-0-444-42148-7.50008-3

[36]   B. Munkhtsengel and S. Iizumi, “Rb-Sr Geochronology and Sr-Nd Isotope Systematics of the Mushgai Khudag Syenite and Bayan Khoshuu Monzonite in South Mongolia,” Mongolian Geoscientist, Vol. 14, 1999, pp. 14-16.

[37]   B. Munkhtsengel and S. Iizumi, “Petrology and Geochemistry of the Lugiin Gol Nepheline Syenite Complex in the Gobi-Tien Shan Fold Belt, Southern Mongolia: A Post-Collisional Potassic Magmatism,” Mongolian Geoscientist, Vol. 14, 1999, pp. 12-14.

[38]   A. Zindler and S. Hart, “Chemical Geodynamics,” Annual Review of Earth and Planetary Sciences, Vol. 14, 1986, pp. 493-471.
http://dx.doi.org/10.1146/annurev.ea.14.050186.002425

[39]   G. Faure, “Principles of Isotope Geology,” 2nd Edition, Wiley, New York, 1986.

[40]   D. J. De Paolo, “Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization,” Earth and Planetary Science Letters, Vol. 53, No. 2, 1981, pp. 189-202.
http://dx.doi.org/10.1016/0012-821X(81)90153-9

[41]   V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, A. B. Kotov, I. K. Kozakov, E. B. Salnikova and A. M. Larin, “Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt: Geological and Isotopic Evidence,” Journal of Asian Earth Sciences, Vol. 23, No. 5, 2004, pp. 605-627. http://dx.doi.org/10.1016/S1367-9120(03)00130-5

[42]   L.-K. Wang, S. O’Reilly, V. Kovach, W. L. Griffin, N. J. Pearson, V. Yarmolyuk, M. I. Kuzmin, C.-J. Chieh, J. G. Shellnutt and Y. Izuka, “Microcontinents among the Accretionary Complexes of the Central Asia Orogenic Belt: In Situ Re-Os Evidence,” Journal of Asian Earth Sciences, Vol. 62, 2013, pp. 37-50.
http://dx.doi.org/10.1016/j.jseaes.2011.09.016

[43]   A. Zindler, E. Jagoutz and S. Goldstein, “Nd, Sr and Pb Isotopic Systematics in a Three-Component Mantle: A New Perspective,” Nature, Vol. 298, 1982, pp. 519-523.

[44]   S. R. Hart, D. C. Gerlach and W. M. White, “A Possible New Sr-Nd-Pb Mantle Array and Consequences for Mantle Mixing,” Geochimica et Cosmochimica Acta, Vol. 50, No. 7, 1986, pp. 1551-1557.

[45]   S. R. Hart, “Heterogeneous Mantle Domains; Signatures, Genesis and Mixing Chronologies,” Earth and Planetary Science Letters, Vol. 90, No. 3, 1988, pp. 273-296.
http://dx.doi.org/10.1016/0012-821X(88)90131-8

[46]   B. L. Weaver, “The Origin of Ocean Island End-Member Compositions: Trace Element and Isotopic Constraints,” Earth and Planetary Science Letters, Vol. 104, No. 2-4, 1991, pp. 381-397.
http://dx.doi.org/10.1016/0012-821X(91)90217-6

[47]   M. A. Lamb and G. Badarch, “Paleozoic Sedimentary Basins and Volcanic-Arc Systems of Southern Mongolia: New Stratigraphic and Sedimentologic Constraints,” International Geology Review, Vol. 39, No. 6, 1997, pp. 542-576. http://dx.doi.org/10.1080/00206819709465288

[48]   U. Wiechert, D. A. Ionov and K. H. Wedepohl, “Spinel Peridotite Xenoliths from the Atsagir-Dush Volcano, Dariganga Lava Plateau, Mongolia: A Record of Partial Melting and Cryptic Metasomatism in the Upper Mantle,” Contributions to Mineralogy and Petrology, Vol. 126, No. 4, 1997, pp. 345-364.
http://dx.doi.org/10.1007/s004100050255

[49]   D. Burianek, P. Hanzl, V. Erban, H. Gilikova and K. Bolormaa, “The Early Cretaceous Volcanic Activity in the Western Part of the Gobi-Altai Rift (Shiliing Nuruu, SW Mongolia),” Journal of Geosciences, Vol. 53, 2008, pp. 167-180.

[50]   A. Peccerillo, “Potassic and Ultraotassic Rocks: Compositional Characteristics, Petrogenesis and Geologic Significance,” Episodes, Vol. 15, 1992, pp. 243-251.

 
 
Top