[1] K. W. Chang and F. A. Howes, “Nonlinear Singular Perturbation Phenomena: Theory and Applications,” Spring-Verlag, New York, 1984.
[2] S. C. Brenner and L. R. Scott, “The Mathematical Theory of Finite Element Methods,” Springer, Berlin, 1994.
http://dx.doi.org/10.1007/978-1-4757-4338-8
[3] H. G. Roos, M. Stynes and L. Tobiska, “Numerical Methods for Singularly Perturbed Differential Equations,” Springer, Berlin, 1996.
http://dx.doi.org/10.1007/978-3-662-03206-0
[4] R. B. Kellogg and A. Tsan, “Analysis of Some Difference Approximations for a Singular Perturbation Problem without Turning Points,” Mathematics of Computation, Vol. 32, No. 144, 1978, pp. 1025-1039.
http://dx.doi.org/10.1090/S0025-5718-1978-0483484-9
[5] F. Brezzi, L. D. Marini and A. Russo, “On the Choice of Stabilizing Subgrid for Convection-Diffusion Problems,” Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 2-5, 2005, pp. 127-148.
http://dx.doi.org/10.1016/j.cma.2004.02.022
[6] T. Linβ and N. Madden, “A Finite Element Analysis of Coupled System of Singularly Perturbed Reaction-Diffusion Equations,” Applied Mathematics and Computation, Vol. 148, No. 3, 2004, pp. 869-880.
http://dx.doi.org/10.1016/S0096-3003(02)00955-4
[7] M. K. Kadalbajoo, A. S. Yadaw and D. Kumar, “Comparative Study of Singularly Perturbed Two-Point BVPs via: Fitted-Mesh Finite Difference Method, B-Spline Collocation Method and Finite Element Method,” Applied Mathematics and Computation, Vol. 204, No. 2, 2008, pp. 713-725. http://dx.doi.org/10.1016/j.amc.2008.07.014
[8] L. P. Franca and E. G. Dutra do Carmo, “The Galerkin Gradient Least Squares Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 74, No. 1, 1989, pp. 41-54.
http://dx.doi.org/10.1016/0045-7825(89)90085-6
[9] F. Ilinca and J.-F. Hétu, “Galerkin Gradient Least-Squares Formulations for Transient Conduction Heat Transfer,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 27-28, 2002, pp. 3073-3097.
http://dx.doi.org/10.1016/S0045-7825(02)00242-6
[10] T. Linβ, “Layer-Adapted Meshes for Convection-Diffusion Problems,” Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 9-10, 2003, pp. 1061-1105. http://dx.doi.org/10.1016/S0045-7825(02)00630-8
[11] M. Stynes, “Steady-State Convection-Diffusion Problems,” Acta Numerica, Vol. 14, 2005, pp. 445-508.
http://dx.doi.org/10.1017/S0962492904000261
[12] M. Stynes and L. Tobiska, “The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy,” SIAM Journal on Numerical Analysis, Vol. 41, No. 5, 2003, pp. 1620-1642.
[13] Z. Zhang, “Finite Element Superconvergence Approximation of One Dimensional Singularly Perturbed Problems,” Numerical Methods for Partial Differential Equations, Vol. 18, No. 3, 2002, pp. 374-395.
http://dx.doi.org/10.1002/num.10001
[14] Z. Zhang, “Finite Element Super-Convergence on Shishkin Mesh for 2-d Convection-Diffusion Problems,” Mathematical and Computer Modelling, Vol. 72, No. 243, 2003, pp. 1147-1177.
http://dx.doi.org/10.1090/S0025-5718-03-01486-8