Full-waveform Velocity Inversion Based on the Acoustic Wave Equation

Show more

References

[1] A. Tarantola, “Inversion of Seismic Reflection Data in the Acoustic Approximation”, Geophysics, Vol. 49, No.8, 1984, pp. 1259-1266.

[2] C. Bunks, F. Saleck, S. Zaleski, and G. Chavent “Multiscale Seismic Waveform Inversion”, Geophysics, Vol.60, No.5, 1995, pp.1457-1473.

[3] R. G. Pratt, C. Shin, and G. J. Hicks, “Gauss-Newton and Full Newton Methods in Frequency-space Seismic Waveform Inversion”, Ceophysical Journal International, Vol.133, No.2, 1998, pp.341-362.

[4] C. Burs and O. Ghattas, “Algorithmic Strategies for Full Waveform Inversion: 1D experiments”, Geophysics, Vol.74, No.6, 2009, pp.WC37-WC46

[5] R. G. Pratt, “Seismic Waveform Inversion in Frequency Domain Part I: Theory and Verification in a Physical Scale Model”, Geophysics, Vol. 64, No.3, 1999, pp.888-901.

[6] Z. M. Song, P. R. Williamson, and R. G. Pratt, “FreQuency-domain Acoustic-wave Modeling and Inversion of Cross Hole data: Part 2—Inversion Method, Synthetic Experiments, and Real-data Results”, Geophysics, Vol.60, No.3, 1995, pp.796-809.

[7] R. G. Pratt and M. H. Worthington, “The Application of Diffraction Tomography to Cross Hole Data”, Geophysics, Vol.53, No.10, 1988, pp.1284-1294.

[8] C. Shin and W. Ha, “A Comparison between the Behavior of Objective Functions for Waveform Inversion in the Frequency and Laplace Domains”, Geophysics, Vol.73, No.5, 2008, pp.VE119-VE133.

[9] W. Hu, A. Abubakar and T. M. Habashy, “Simultaneous Multifrequency Inversion of Full-waveform Seismic Data”, Geophysics, Vol.74, No.2, 2009, pp.R1-R14.

[10] L. Sirgue and R. G. Pratt, “Efficient Waveform Inversion and Imaging: A Strategy for Selecting Temporal Frequency”, Geophysics, Vol.69, No.1, 2004, pp.231-248.

[11] R. Fletcher and C. Reeves, “Function Minimization by Conjugate Gradients”, Com-puter Journal, Vol.7, No.2, 1964, pp.149-154.

[12] C. G. Broyden, “The Convergence of a Class of Double- Rank Minimization Algorithms. 2. The New Algorithm”, J. of the Institute of Math. And its Appl., Vol. 6, 1970, pp.222-231.

[13] R. Fletcher, “A New Approach to Variable Metric Algorithms”, Computer Journal, Vol.13, No.3, 1970, pp.317-322.

[14] D. Goldfarb, “A Family of Variable Metric Methods Derived by Variational Means”, Mathematics of Computation., Vol. 24, No. 109, 1970, pp. 23-26.

[15] D. F. Shanno, “Conditioning of Quasi-Newton Methods for Function Minimization”, Math. Comput., Vol.24, No.111, 1970, pp.647-656 .

[16] R. Clayton and B. Engquist, “Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations”, Bulletin of the Seismological Society of America, Vol.67, No.6, 1977, pp.1529-1540.

[17] J. P. Berenger, “A Perfectly Matched Layer for Absorbing of Electromagnetic Waves”, J. Comput. Phys., Vol. 114, No.2, 1994, pp.185-200.

[18] M. R. Hestenes and E. L. Stiefel, “Methods of Conjugate Gradients for Scaling Linear Systems”, J. Res. National Bureau Standards, Vol. 49, No.6, 1952, pp.409-436.

[19] E. Polak and Ribiére, “Note Sur la Convergence de Directions Conjugate”, Rev. Francaise Informat Recherche Opertionelle, 3e Année, 16, 1969, pp.35-43.

[20] B.T. Polyak, “The Conjugate Gradient Method in Extreme Problems”, USSR Comp. Math. and Math. Phys., Vol.9, No.4, 1969, pp. 94-112.

[21] L. Armijo, “Minimization of Functions Having Lipschitz Continuous First Partial Derivatives”, Pacific Journal of Mathematics, Vol.16, No.1, 1966, pp.1-3.

[22] P. Wolfe, “Convergence Conditions for Ascent Methods”, SIAM Rev., Vol.11, No.2, 1969, pp.226-235.

[23] P. Wolfe, “Convergence Conditions for Ascent Methods II: Some Corrections”, SIAM Rev., Vol.13, No.2, 1971, pp.185-188.

[24] J. Nocedal, Y. Yuan, “Analysis of a Self-scaling Quasi-Newton Method”, Math. Program, Vol.61, No.1-3, 1993, pp.19-37.

[25] W. Zhang, “Imaging Methods and Com-putations Based on the Wave Equation”, Beijing, Science Press, 2009.