AM  Vol.4 No.10 C , October 2013
On the Quantum Zeno Effect and Time Series Related to Quantum Measurements
ABSTRACT

Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and certain experiments one could check whether, from the statistical point of view, a concrete system behaves like a quantum system. The more general version of quantum Zeno effect can be helpful to prove that the brain acts like in a quantum system. The proof of our main result is based on certain formulas describing probability distributions of time series related to quantum measurements.


Cite this paper
K. Fichtner and K. Inoue, "On the Quantum Zeno Effect and Time Series Related to Quantum Measurements," Applied Mathematics, Vol. 4 No. 10, 2013, pp. 61-69. doi: 10.4236/am.2013.410A3008.
References
[1]   E. C. G. Sudarshan and B. Misra, “The Zeno’s Paradox in Quantum Theory,” Journal of Mathematical Physics, Vol. 18, No. 4, 1977, pp. 756-763.

[2]   T. Nakanishi, K. Yamane and M. Kitano, “AbsorptionFree Optical Control of Spin Systems: The Quantum Zeno Effect in Optical Pumping,” Physical Review A, Vol. 65, No. 1, 2001, Article ID: 013404.
http://dx.doi.org/10.1103/PhysRevA.65.013404

[3]   P. Facchi, D. A. Lidar and S. Pascazio, “Unification of Dynamical Decoupling and the Quantum Zeno Effect,” Physical Review A, Vol. 69, No. 3, 2004, Article ID: 032314.
http://dx.doi.org/10.1103/PhysRevA.69.032314

[4]   A. Degasperis, L. Fonda and G. C. Ghirardi, “Does the Lifetime of an Unstable System Depend on the Measuring Apparatus?” Il Nuovo Cimento A Series 11, Vol. 21, No. 3, 1974, pp. 471-484.
http://dx.doi.org/10.1007/BF02731351

[5]   C. Teuscher and D. Hofstadter, “Alan Turing: Life and Legacy of a Great Thinker,” Springer, Berlin, Heidelberg, 2004.
http://dx.doi.org/10.1007/978-3-662-05642-4

[6]   J. von Neumann, “Mathematische Grundlagen der Quantenmechanik,” Springer, Berlin, Heidelberg, 1932.

[7]   K.-H. Fichtner and L. Fichtner, “Bosons and a quantum model of the brain, Jenaer Schriften zur Mathematik und Informatik,” Math/Inf/08/05, Faculty of Mathematics and Informatics, FSU Jena, Jena, 2005, 27 p.

[8]   K.-H. Fichtner and L. Fichtner, “Quantum Models of Brain Activities I—Recognition of Signals,” In: J. C. Garcia, R. Quezada and S. B. Sontz, Eds., Quantum Probability and Related topics, XXIII of QP-PQ: Quantum Probability and White Noise Analysis, World Scientific, New Jersey, London, Singapore, 2008, pp. 135-144.

[9]   K.-H. Fichtner, L. Fichtner, W. Freudenberg and M. Ohya, “On a Mathematical Model of Brain Activities,” Quantum Theory, Reconsideration of Foundations-4, 962 of AIP Conference Proceedings, American Institute of Physics, Melville, New York, 2007, pp. 85-90.

[10]   K.-H. Fichtner, L. Fichtner, W. Freudenberg and M. Ohya, “On a Quantum Model of the Recognition Process,” In: L. Accardi, W. Freudenberg and M. Ohya, Eds., Quantum Bio-Informatics, XXI of QP-PQ: Quantum Probability and White Noise Analysis, World Scientific, New Jersey, London, Singapore, 2008, pp. 64-84.

[11]   K.-H. Fichtner, L. Fichtner, W. Freudenberg and M. Ohya, “On a Quantum Model of the Brain Activities,” In: L. Accardi, W. Freudenberg and M. Ohya, Eds., Quantum Bio-Informatics III, XXVI of QP-PQ: Quantum Probability and White Noise Analysis, World Scientific, New Jersey, London, Singapore, 2010, pp. 81-92.

[12]   K.-H. Fichtner, L. Fichtner, W. Freudenberg and M. Ohya, “Quantum Models of the Recognition Process—On a Convergence Theorem,” Open Systems and Information Dynamics, Vol. 17, No. 2, 2010, pp. 161-187.
http://dx.doi.org/10.1142/S1230161210000114

[13]   K.-H. Fichtner, L. Fichtner, W. Freudenberg and M. Ohya, “Self-Collapses of Quantum Systems and Brain Activities,” In: L. Accardi, W. Freudenberg and M. Ohya, Eds., Quantum Bio-Informatics IV, XXVIII of QP-PQ: Quantum Probability and White Noise Analysis, World Scientific, New Jersey, London, Singapore, 2011, pp. 101-115.

[14]   K.-H. Fichtner, L. Fichtner, K. Inoue and M. Ohya, “Internal Noise Caused by the Memory,” Open Systems and Information Dynamics, Vol. 18, No. 4, 2011, pp. 405-422.
http://dx.doi.org/10.1142/S1230161211000285

[15]   K.-H. Fichtner, K. Inoue and M. Ohya, “On a Quantum Model of Brain Activities—Distribution of the Outcomes of EEG-Measurements and Random Point Fields,” Open Systems and Information Dynamics, Vol. 19, No. 4, 2012, Article ID: 1250025.

[16]   J. M. Schwartz, H. P. Stapp and M. Beauregard, “Quantum Physics in Neuroscience and Psychology: A Neurophysical Model of Mind-Brain Interaction,” Philosophical Transactions of the Royal Society of London B, Vol. 360, No. 1458, 2005, pp. 1309-1327.
http://dx.doi.org/10.1098/rstb.2004.1598

[17]   R. Penrose, “The Emperor’s New Mind: Concerning Computers, Minds and The Laws of Physics,” Oxford University Press, Oxford, 1989.

[18]   S. Hameroff and R. Penrose, “Orchestrated Objective Reduction of Quantum Coherence N Brain Microtubules: The ‘Orch OR’ Model Forconsciousness,” Mathematics and Computer Simulation, Vol. 40, No. 3-4, 1996, pp. 453-480. http://dx.doi.org/10.1016/0378-4754(96)80476-9

[19]   R. Hari and O. V. Lounasmaa, “Neuromagnetism: Tracking the Dynamics of the Brain,” Physics World, Vol. 13, 2000, pp. 33-38.

[20]   W. Tirsch, “Biomedizinische Relevanz der quantitativen EEG Analyse,” LMU München, München, 2009.

[21]   K.-H. Fichtner, “Time Series Related to Quantum Measurements and the Quantum Zenon Effect,” Jenaer Schriften zur Mathematik und Informatik, Math/Inf/02/ 2012, Faculty of Mathematics and Informatics, FSU Jena, Jena, 2012, 15 p.

[22]   M. Asano, M. Ohya, Y. Tanaka, A. Khrennikov and I. Basieva, “Quantum Like Representation of Baysian Updating,” American Institute of Physics, Vol. 1327, No. 1, 2011, pp. 57-62.

[23]   M. Asano, I. Basieva, A. Khrennikov, M. Ohya and I. Yamato, “A General Quantum Information Model for the Contextual Dependent Systems Breaking the Classical Probability Law,” ArXiv:1105.4769v1(quant-ph), 21 May 2011.

 
 
Top