[1] J. S. Gagnon, S. Lovejoy and D. Schertzer, “Multifractal Earth Topography,” Nonlinear Processes in Geophysics, Vol. 13, No. 5, 2006, pp. 541-570. http://dx.doi.org/10.5194/npg-13-541-2006
[2] D. Lavallée and R. J. Archuleta, “Stochastic Modeling of Slip Spatial Complexities for the 1979 Imperial Valley, California, Earthquake,” Geophysical Research Letters, Vol. 30, No. 5, 2003, p. 1245. http://dx.doi.org/10.1029/2002GL015839
[3] D. Lavallée, “On the Random Nature of Earthquake Sources and Ground Motions: A United Theory,” Advances in Geophysics, Vol. 50, 2008, pp. 427-461. http://dx.doi.org/10.1016/S0065-2687(08)00016-2
[4] S. Lovejoy and D. Schertzer, “Multifractals and Rain. New Uncertainty Concepts,” In: A. W. Kundzewicz, Ed., Hydrology and Hydrological Modelling, Cambridge Press, Cambridge, 1995, pp. 62-103.
[5] D. Schertzer and S. Lovejoy, “Physical Modeling and Analysis of Rain and Clouds by Anisotropic Scaling Multiplicative Processes,” Journal of Geophysics Research, Vol. 92, No. D8, 1987, pp. 9692-9714.
[6] I. Tchiguirinskaia, S. Lu, F. J. Molz, T. M. Williams and D. Lavallée, “Multifractal versus Monofractal Analysis of Wetland Topography,” Stochastic Environmental Research and Risk Assessment, Vol. 14, No. 1, 2000, pp. 8-32.
[7] T. M. Over and V. K. Gupta, “Statistical Analysis of Mesoscale Rainfall: Dependence of a Random Cascade Generator on Large-Scale Forcing,” Journal of Applied Meteorology, Vol. 33, No. 12, 1994, pp. 1526-1542. http://dx.doi.org/10.1175/1520-0450(1994)033<1526:SAOMRD>2.0.CO;2
[8] L. LeCam, “A Stochastic Description of Precipitation,” 4th Berkeley Symposium on Mathematical Statistics and Probability, Statistical Laboratory of the University of California, Berkeley, 20 June-30 July 1960, pp. 165-186.
[9] P. J. Brockwell and R. A. Davis, “Time Series: Theory and Methods,” 2nd Edition, Springer-Verlag, New York, 1991. http://dx.doi.org/10.1007/978-1-4419-0320-4
[10] G. Box and G. M. Jenkins, “Time Series Analysis: Forecasting and Control,” 2nd Edition, Holden-Day, San Francisco, 1976.
[11] P. S. P. Cowperthwait, “Further Developments of the Neyman-Scott Clustered Point Process for Modelling Rainfall,” Water Resources Research, Vol. 27, No. 7, 1991, pp. 1431-1438. http://dx.doi.org/10.1029/91WR00479
[12] E. C. Waymire, V. K. Gupta and I. Rodriguez-Iturbe, “A Spectral Theory of Rainfall Intensity at the Meso-β Scale,” Water Resources Research, Vol. 20, No. 10, 1984, pp. 1453-1465. http://dx.doi.org/10.1029/WR020i010p01453
[13] J. B. Valdes, “Issues in the Modelling of Precipitation,” Stochastic Hydrology and Its Use in Water Resources Systems Simulation and Optimization, NATO ASI Series Vol. 237, 1993, pp. 217-220. http://dx.doi.org/10.1007/978-94-011-1697-8_11
[14] S. Lovejoy and D. Schertzer, “Scale, Scaling and Multifractals in Geophysics: Twenty Years on,” In: A. A. Tsonis and J. Elsner, Eds., Nonlinear Dynamics in Geosciences, Springer, New York, 2007, pp. 311-337. http://dx.doi.org/10.1007/978-0-387-34918-3_18
[15] J. Wilson, D. Shertzer and S. Lovejoy, “Continuous Multiplicative Cascade Models of Rain and Clouds,” In: D. Schertzer and S. Lovejoy, Eds., Non-Linear Variability in Geophysics, Kluwer, Dordrecht, 1991, pp. 185-207. http://dx.doi.org/10.1007/978-94-009-2147-4_13
[16] B. B. Mandelbrot, “Fractal Geometry in Nature,” W. H. Freeman and Company, San Francisco, 1982.
[17] U. Frisch and G. Parisi, “Turbulence and Predictability of Geophysical Flows and Climate Dynamics,” Varenna Summer School LXXXVIII, 1983.
[18] J. Feder, “Fractals (Physics of Solids and Liquids),” Springer, New York, 1988.
[19] K. Falconer, “Fractal Geometry: Mathematical Foundations and Applications,” Wiley, Chichester, 2003. http://dx.doi.org/10.1002/0470013850
[20] D. Lavallée, “Multifractal Analysis and Simulation Techniques and Turbulent Fields,” Ph.D. Dissertation, McGill University, Montreal, 1991.
[21] D. Saupe, “Algorithms for Random Fractals,” In: H.-O. Peitgen and D. Saupe, Eds., The Science of Fractal Images, Springer, New York, 1998, pp. 71-136.
[22] Robust Analysis Inc., “User Manual for STABLE 5.3 C Library Version,” Robust Analysis Inc., Takoma Park, 2012.
[23] J. P. Nolan, “Stable Distributions—Models for Heavy Tailed Data, Chapter 1 (Online Version),” Birkhauser, Boston, 2013.
[24] V. M. Zolotarev, “One-Dimensional Stable Distributions,” American Mathematical Society, Providence, 1986.
[25] V. V. Uchiaikin and V. M. Zolotarev, “Chance and Stability,” VSP International Science Publishers, Utrecht, 1999. http://dx.doi.org/10.1515/9783110935974
[26] P. Liu, R. Archuleta and S. Hartzell, “Prediction of Broad-band Ground-Motion Time Histories: Hybrid Low/ High-Frequency Method with Correlated Random Source Parameters,” Bulletin of the Seismological Society of America, Vol. 96, No. 6, 2006, pp. 2118-2130. http://dx.doi.org/10.1785/0120060036
[27] J. R. M. Hosking and J. R. Wallis, “Regional Frequency Analysis: An Approach Based on L-Moments,” Cambridge University Press, Cambridge, 1997. http://dx.doi.org/10.1017/CBO9780511529443