[1] Reynolds, B.A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707-1710.
http://dx.doi.org/10.1126/science.1553558
[2] Gage, F.H., Coates, P.W., Palmer, T.D., Kuhn, H.G., Fisher, L.J., Suhonen, J.O., Peterson, D.A., Suhr, S.T. and Ray, J. (1995) Survival and differentiation of adult neuronal progenitor cells tranplanted to the adult brain. Proceedings of the National Academy of Sciences, 92, 11879-11883. http://dx.doi.org/10.1073/pnas.92.25.11879
[3] Taupin, P. and Gage, F.H. (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. Journal of Neuroscience Research, 69, 745-749.
http://dx.doi.org/10.1002/jnr.10378
[4] Harper, M., Antoniou, A., Villalobos-Menuey, E., Russo, A., Trauger, R., Vendemelio, M., George, A., Bartholomew, R., Carlo, D., Shaikh, A., Kupperman, J., Newell, E., Bespalov, I., Wallace, S., Liu, Y., Rogers, J., Gibbs, G., Leahy, J., Camley, R., Melamede, R. and Newell, K. (2002) Characterization of a novel metabolic strategy used by drug-resistant tumor cells. The FASEB Journal, 16, 1550-1557. http://dx.doi.org/10.1096/fj.02-0541com
[5] Vangipuram, S.D. and Lyman, W.D. (2010) Ethanol alters cell fate of fetal human brain-derived stem and progenitor cells. Alcoholism: Clinical and Experimental Research, 34, 1574-1583.
http://dx.doi.org/10.1111/j.1530-0277.2010.01242.x
[6] Kim, K.C., Go, H.S., Bak, H.R., Choi, C.S., Choi, I., Kim, P., Han, S., Han, S.M., Shin, C.Y. and Ko, K.H. (2010) Prenatal exposure of ethanol induces increased glutamatergic neuronal differentiation of neural progenitor cells. Journal of Biomedical Science, 17, 1-9.
http://dx.doi.org/10.1186/1423-0127-17-85
[7] Prock, T.L. and Miranda, R.C. (2007) Embryonic cerebral cortical progenitors are resistant to apoptosis, but increase expression of suicide receptor DISC-complex genes and suppress autophagy following ethanol exposure. Alcoholism: Clinical and Experimental Research, 31, 694-703.
[8] Dikranian, K., Quin, Y., Labruyere, J., Nemmers, B. and Olney, J.W. (2005) Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Developmental Brain Research, 155, 1-13.
http://dx.doi.org/10.1016/j.devbrainres.2004.11.005
[9] Ceccatelli, S., Tamm, C., Sleeper, E. and Orrenius, S. (2004) Neural stem cells and cell death. Toxicology Letter, 149, 59-66. http://dx.doi.org/10.1016/j.toxlet.2003.12.060
[10] Moreno-Sanchez, R., Saavedra, E., Rodriguez-Enriquez, S., Gallardo-Perez, J.C., Quezada, H. and Westerhoff, H.V. (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion, 10, 626-639. http://dx.doi.org/10.1016/j.mito.2010.06.002
[11] Cavaliere, F., D’Ambrosi, N., Sancesario, G., Bernardi, G. and Volonte, C. (2001) Hypoglycaemia-induced cell death: Features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochemistry International, 38, 199-207.
http://dx.doi.org/10.1016/S0197-0186(00)00087-5
[12] Auer, R.N. (1986) Progress review: Hypoglycemic brain damage. Stroke, 17, 699-708.
http://dx.doi.org/10.1161/01.STR.17.4.699
[13] Mitchell, J.J., Paiva, M., Moore, D.B., Walker, D.W. and Heaton, M.B. (1998) A comparative study of ethanol, hypoglycemia, hypoxia and neurotrophic factor interactions with fetal rat hippocampal neurons: A multi-factor in vitro model for developmental ethanol effects. Developmental Brain Research, 105, 241-250.
http://dx.doi.org/10.1016/S0165-3806(97)00182-X
[14] Suh, S.W., Hamby, A.M., Gum, E.T., Shin, B.S., Won, S.J., Sheline, C.T., Chan, P.H. and Swanson, R.A. (2008) Sequential release of nitric oxide, zinc and superoxide in hypoglycemic neuronal death. Journal of Cerebral Blood Flow and Metabolism, 28, 1697-1706.
http://dx.doi.org/10.1038/jcbfm.2008.61
[15] Geuna, S., Borriione, P., Fornaro, M. and Giacobini-Robecchi, M.G. (2001) Adult stem cells and neurogenesis: Historical roots and state of the art. The Anatomical Record, 265, 132-141. http://dx.doi.org/10.1002/ar.1135
[16] Cao, Q., Benton, R.L. and Wittemore, S.R. (2002) Stem cell repair of central nervous system injury. Journal of Neuroscience Research, 68, 501-510.
http://dx.doi.org/10.1002/jnr.10240
[17] Horie, N., Moriya, T., Mitome, M., Kitagawa, N., Nagata, I. and Shinohara, K. (2004) Lowered glucose suppressed the proliferation and increased the differentiation of murine neural stem cells in vitro. FEBS Letters, 571, 37-242.
http://dx.doi.org/10.1016/j.febslet.2004.06.085
[18] Wu, Z., Huang, K., Yu, J. H., Le, T., Namihira, M., Liu, Y., Zhang, J., Xue, Z., Cheng, L. and Fan, G. (2012) Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. Journal of Neuroscience Research, 90, 1883-1891.
[19] Newell, M.K., Melamede, R., Villalobos-Menuey, E., Swartzendruber, D., Trauger, R., Camley, R.E. and Crisp, W. (2004) The effects of chemotherapeutics on cellular metabolism and consequent immune recognition. Journal of Immune Based Therapies and Vaccines, 2, 1-6.
http://dx.doi.org/10.1186/1476-8518-2-3
[20] Zimmermann, K.C., Bonzon, C. and Green, D.R. (2001) The machinery of programmed cell death. Pharmacology and Therapeutics, 92, 57-70.
http://dx.doi.org/10.1016/S0163-7258(01)00159-0
[21] Strasser, A., Jost, P.J. and Nagata, S. (2009) The many roles of FAS receptor signaling in the immune system. Immunity, 30, 180-192.
http://dx.doi.org/10.1016/j.immuni.2009.01.001
[22] Mahmood, Z. and Shukla, Y. (2010) Death receptors: Targets for cancer therapy. Experimental Cell Research, 6, 887-899. http://dx.doi.org/10.1016/j.yexcr.2009.12.011
[23] Corsini, N.S., Sancho-Martinez, I., Laudenklos, S., Glagow, D., Kumar, S., Letellier, E., Koch, P., Teodorczyk, M., Kleber, S., Klussmann, S., Wiestler B., Brustle O., Mueller, W., Gieffers, C., Hill, O., Thiemann, M., Seedorf, M., Gretz, N., Sprengel, R., Celikel, T. and Martin-Villalba, A. (2009) The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair. Cell Stem Cell, 5, 178-190.
http://dx.doi.org/10.1016/j.stem.2009.05.004
[24] Knight, J.C., Scharf, E.L. and Draayer, Y. (2010) Fas activation increases neural progenitor cell survival. Journal of Neuroscience Research, 88, 746-757.
[25] Schweitzer, S.C., Reding, A.M., Patton, H.M., Sullivan, T.P., Stubbs, C.E., Villalobos-Manuey, E., Huber, S.A. and Newell, M.K. (2006) Endogenous versus exogenous fatty acid availability affects lysosomal acidity and MHC class II expression. Journal of Lipid Research, 47, 2525-2537.
http://dx.doi.org/10.1194/jlr.M600329-JLR200
[26] Nixon, R., Mathews, P.M. and Cataldo, A.M. (2001) The neuronal endosomal-lysosomal system in alzheimer’s disease. Journal of Alzheimer’s Disease, 3, 97-107.
[27] Shapiro, H.M. (2003) Practical flow cytometry. John Wiley & Sons Inc., Hoboken, 225-256.
[28] Pajusto, M., Tarkkanen, J. and Mattila, P.S. (2005) Human primary adenotonsillar naive phenotype CD45RA+ CD4+ T lymphocytes undergo apoptosis upon stimulation with a high concentration of CD3 antibody. Scaninavian Journal of Immunology, 62, 546-551.
http://dx.doi.org/10.1111/j.1365-3083.2005.01697.x
[29] Ryder, E.F., Snyder, E.Y. and Cepko, C.L. (1990) Establishment and characterization of mulipotent neural cell lines using retrovirus vector-mediated oncogene transfer. Journal of Neurobiology, 21, 356-375.
http://dx.doi.org/10.1002/neu.480210209