ANP  Vol.2 No.4 , November 2013
Zinc Oxide Nanoparticles in Bacterial Growth Medium: Optimized Dispersion and Growth Inhibition of Pseudomonas putida
ABSTRACT

The majority of nanoparticles tend to agglomerate in bacterial growth media. Thus, nanoparticle-specific characteristics can get lost. To investigate the influence of nanoparticles on bacteria, these particles should remain in their nanoparticulate state. The present study demonstrates the stabilization of commercially available zinc oxide (ZnO) with sodiumhexametaphosphate (SHMP) in bacterial growth medium (LB) to avoid agglomeration of these particles after the addition to LB. This established method is appropriate to stabilize ZnO agglomerates as small as 43 nm. The method of fractionated centrifugation was used to obtain stable agglomerates (also stable in the presence of bacteria) with different mean diameters. The SHMP-stabilized ZnO inhibits the growth of Pseudomonas putida with increasing concentration (up to 500 mg/L) and decreasing agglomerate size (43 - 450 nm).


Cite this paper
Vielkind, M. , Kampen, I. and Kwade, A. (2013) Zinc Oxide Nanoparticles in Bacterial Growth Medium: Optimized Dispersion and Growth Inhibition of Pseudomonas putida. Advances in Nanoparticles, 2, 287-293. doi: 10.4236/anp.2013.24039.
References
[1]   “Project on Emerging Nanotechnologies,” 2011.
http://www.nanotechproject.org/inventories/consumer/

[2]   Umweltbundesamt, Nanotechnik, “Chancen und Risiken für Mensch und Umwelt,” 2006.
http://www.nanotruck.de/fileadmin/user_upload/Berichte%20und%20Druckschriften/Literaturliste/Hintergrundpapier_Umweltbundesamt.pdf

[3]   K. Schmid and M. Riediker, “Use of Nanoparticles in Swiss Industry: A Targeted Survey,” Environmental Science & Technology, Vol. 42, No. 7, 2008, pp. 2253-2260.
http://dx.doi.org/10.1021/es071818o

[4]   F. Gottschalk, T. Sonderer, R. W. Scholz and B. Nowack, “Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions,” Environmental Science & Technology, Vol. 43, No. 24, 2009, pp. 9216-9222.
http://dx.doi.org/10.1021/es9015553

[5]   L. Zhang, Y. Jiang, Y. Ding, M. Povey and D. York, “Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids),” Journal of Nanoparticle Research, Vol. 9, No. 3, 2007, pp. 479-489. http://dx.doi.org/10.1007/s11051-006-9150-1

[6]   O. Yamamoto, “Influence of Particle Size on the Antibacterial Activity of Zinc Oxide,” International Journal of Inorganic Materials, Vol. 3, No. 7, 2001, pp. 643-646.
http://dx.doi.org/10.1016/S1466-6049(01)00197-0

[7]   C. Gunawan, W. Y. Teoh, Ricardo, C. P. Marquis and R. Amal, “Zinc Oxide Nanoparticles Induce Cell Filamentation in Escherichia coli,” Particle & Particle Systems Characterization, Vol. 30, No. 4, 2013, pp. 375-380.
http://dx.doi.org/10.1002/ppsc.201200152

[8]   N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd and P. S. Casey, “Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility,” Environmental Science & Technology, Vol. 41, No. 24, 2007, pp. 8484-8490.
http://dx.doi.org/10.1021/es071445r

[9]   L. K. Adams, D. Y. Lyon and P. J. J. Alvarez, “Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions,” Water Research, Vol. 40, No. 19, 2006, pp. 3527-3532.
http://dx.doi.org/10.1016/j.watres.2006.08.004

[10]   P. Bihari, M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga, C. A. Reichel, C. Coester, T. Tuomi, M. Rehberg and F. Krombach, “Optimized Dispersion of Nanoparticles for Biological in Vitro and in Vivo Studies,” Particle and Fibre Toxicology, Vol. 5, 2008, p. 14.
http://dx.doi.org/10.1186/1743-8977-5-14

[11]   S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Madler and A. L. Neal, “Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping,” ACSNANO, Vol. 4, No. 1, 2010, pp. 15-28.
http://dx.doi.org/10.1021/nn901503q

[12]   K. Hund-Rinke, K. Schlich and A. Wenzel, “TiO2 nanoparticles—Relationship between Dispersion Preparation Method and Ecotoxicity in the Algal Growth Test,” Umweltwissenschaften und Schadstoff-Forschung, Vol. 22, No. 5, 2010, pp. 517-528.
http://dx.doi.org/10.1007/s12302-010-0147-0

[13]   A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. J. Miller and Z. Ji, “Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices,” Environmental Science & Technology, Vol. 44, No. 6, 2010, pp. 1962-1967.
http://dx.doi.org/10.1021/es902987d

[14]   C. Schulze, A. Kroll, C.-M. Lehr, U. F. Schaefer, K. Becker, J. Schnekenburger, C. S. Isfort, R. Landsiedel and W. Wohlleben, “Not Ready to Use—Overcoming Pitfalls When Dispersing Nanoparticles in Physiological Media,” Nanotoxicology, Vol. 2, No. 2, 2008, pp. 51-61.
http://dx.doi.org/10.1080/17435390802018378

[15]   T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink and A. E. Nel, “Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties,” ACSNANO, Vol. 2, No. 10, 2008, pp. 2121-2134. http://dx.doi.org/10.1021/nn800511k

[16]   J. Lyklema, “Electrokinetics after Smoluchowski,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 222, No. 1-3, 2003, pp. 5-14.
http://dx.doi.org/10.1016/S0927-7757(03)00217-6

[17]   Z. Ji, X. Jin, S. George, T. Xia, H. Meng, X. Wang, E. Suarez, H. Zhang, E. M. V. Hoek, H. A. Godwin, A. E. Nel and J. I. Zink, “Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media,” Environmental Science & Technology, Vol. 44, No. 19, 2010, pp. 7309-7314. http://dx.doi.org/10.1021/es100417s

[18]   M. Li, L. Zhu and D. Lin, “Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components,” Environmental Science & Technology, Vol. 45, No. 5, 2011, pp. 1977-1983.
http://dx.doi.org/10.1021/es102624t

[19]   D. N. Williams, S. H. Ehrman and T. R. P. Holoman, “Evaluation of the Microbial Growth Response to Inorganic Nanoparticles,” Journal of Nanobiotechnology, Vol. 4, No. 3, 2006, pp. 1-8.
http://dx.doi.org/10.1186/1477-3155-4-3

[20]   E. J. W. Verwey and J. T. G. Overbeek, “Theory of the Stability of Lyophobic Colloids,” Elsevier Pub. Co., New York, 1948.

[21]   R. H. Müller, “Zeta Potential and Particle Charge in Laboratory Usage,” Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1996.

[22]   K. S. Suganthi and K. S. Rajan, “Temperature Induced Changes in ZnO-Water Nanofluid: Zeta Potential, Size Distribution and Viscosity Profiles,” International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp. 7969-7980.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.08.032

[23]   R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti and F. Fiévet, “Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium,” Nano Letters, Vol. 6, No. 4, 2006, pp. 866-870.
http://dx.doi.org/10.1021/nl052326h

[24]   K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley and A. Punnoose, “Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems,” Applied Physics Letters, Vol. 90, No. 213902, 2007, pp. 213902-1-213902-3. http://dx.doi.org/10.1063/1.2742324

[25]   M. Hasselov, J. W. Readman, J. F. Ranville and K. Tiede, “Nanoparticle Analysis and Characterization Methodologies in Environmental Risk Assessment of Engineered Nanoparticles,” Ecotoxicology, Vol. 17, No. 5, 2008, pp. 344-361. http://dx.doi.org/10.1007/s10646-008-0225-x

 
 
Top