IJG  Vol.4 No.8 , October 2013
Control in Beach and Dune Sands of the Gulf of Mexico and the Role of Nearby Rivers

A sedimentological, petrographic, and geochemical study of beach, dune, and river sands was carried out along the northwestern Gulf of Mexico. The main goal of this work is to show how beach and dune sands are controlled texturally, compositionally, and chemically by the nearby rivers for each beach location using a particle size analyser, a polarized microscope, a X-ray fluorescence and ICP mass spectrometer to obtain the following: grain-size values from one river (Carrizal River) are similar in range to their counterpart beach sands but not similar to the dune sands (Barra del Tordo). Rivers (Panuco and Carrizal) are compositionally controlling the quartz and feldspar contents of their counterpart beach and dune sands (i.e., Playa Miramar and Barra del Tordo). Rivers (Soto La Marina River) are directly influencing the composition of the beach sands (La Pesca) based upon the total quartz content, beach and dune sands. The concentration of magnetite grain fractions (Barra del Tordo beach and dune sands) is not under the influence of the nearby river (Carrizal River). In this case the compositional influence of beach and dune sands is related to sediment discharges by other fluvial systems, redistribution of the beach and dune sands along the coast and deflation/winnowing of light minerals. The Eu positive anomaly in the beach and dune sands from the three sites (i.e. Playa Miramar, Barra del Tordo, La Pesca) is linked to an increase in the P(plagioclase)/K(potash feldspar) ratio. The (La/Lu)cn highest ratio for river sands (Carrizal River) suggests quartz enrichment compared to their beach and dune sands counterparts. The (Gd/Yb)cn ratio for one river (i.e., Carrizal River) indicates that it is low in heavy rare earth elements. HREE compared to their beach and dune sands counterparts indicates less concentration of heavy minerals as potential carriers of HREE seawards.

Cite this paper
J. Kasper-Zubillaga, J. Armstrong-Altrin, A. Carranza-Edwards, O. Morton-Bermea and R. Cruz, "Control in Beach and Dune Sands of the Gulf of Mexico and the Role of Nearby Rivers," International Journal of Geosciences, Vol. 4 No. 8, 2013, pp. 1157-1174. doi: 10.4236/ijg.2013.48110.
[1]   A. Carranza-Edwards and L. Rosales-Hoz, “Grain Size Trends and Provenance of Southwestern Gulf of Mexico Beach Sands,” Canadian Journal of Earth Sciences, Vol. 32, No. 12, 1995, pp. 2009-2014.

[2]   A. Carranza-Edwards, “Grain Size and Sorting in Modern Sands,” Journal of Coastal Research, Vol. 17, No. 1, 2001, pp. 38-52.

[3]   A. Carranza-Edwards, J. J. Kasper-Zubillaga, L. Rosales-Hoz, E. Morales de la Garza and R. Lozano-Santa Cruz, “Beach Sand Composition and Provenance in a Sector of the Southwestern Mexican Pacific,” Revista Mexicana de Ciencias Geológicas, Vol. 26, No. 2, 2009, pp. 433-447.

[4]   S. Critelli and E. Le Pera, “Detrital Modes and Provenance of Miocene Sandstones and Modern Sands of the Southern Apennines Thrust-Top Basins (Italy),” Journal of Sedimentary Research, Vol. A64, 1994, pp. 824-835.

[5]   L. Folk, “Petrology of Sedimentary Rocks,” Austin Texas, Hemphill, 1980.

[6]   H. Ibbeken and R. Schleyer, “Source and Sediment,” Springer, Berlin, 1991.

[7]   J. J. Kasper-Zubillaga and A. Carranza-Edwards, “Grain Size Discrimination between Sands of Desert and Coastal dunes from Northwestern Mexico,” Revista Mexicana de Ciencias Geológicas, Vol. 22, No. 3, 2005, pp. 383-390.

[8]   J. J. Kasper-Zubillaga and H. Zolezzi-Ruiz, “Grain Size, Mineralogical and Geochemical Studies of Coastal and Inland Dune Sands from El Vizcaíno Desert, Baja California Peninsula, Mexico,” Revista Mexicana de Ciencias Geológicas, Vol. 24, No. 3, 2007, pp. 423-438.

[9]   J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma and S. Ramasamy, “Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation Southern India: Implications for Provenance, Weathering and Tectonic Setting,” Journal of Sedimentary Research, Vol. 74, No. 2, 2004, pp. 285-297.

[10]   J. S. Armstrong-Altrin, “Provenance of Sands from Cazones, Acapulco, and Bahía Kino Beaches, Mexico,” Revista Mexicana de Ciencias Geológicas, Vol. 26, No. 3, 2009, pp. 764-782.

[11]   J. J. Kasper-Zubillaga, A. Carranza-Edwards and O. Morton-Bermea, “Heavy Minerals and Rare Earth Elements in Coastal and Inland Dune Sands of El Vizcaino Desert, Baja California Peninsula, Mexico,” Marine Georesources and Geotechnology, Vol. 26, No. 2, 2008, pp. 172-188. http://dx.doi.org/10.1080/10641190802258932

[12]   M. A. Mange and E. G. Otvos, “Gulf Coastal Plain Evolution in West Louisiana: Heavy Mineral Provenance and Pleistocene Alluvial Chronology,” Sedimentary Geology, Vol. 182, No. 1-4, 2005, pp. 29-57.

[13]   D. R. Muhs, “Mineralogical Maturity in Dune Fields of North America, Africa and Australia,” Geomorphology, Vol. 59, 2004, pp. 247-269.

[14]   G. G. Zuffa, “Optical Analysis of Arenites: Influence of Methodology on Compositional Results,” G. G. Zuffa, Ed., Provenance of Arenites Dordrecht, Netherlands, pp. 165-189.

[15]   K. Sultan and N. A. Shazili, “Geochemical Baselines of Major, Minor and Trace Elements in the Tropical Sediments of the Terengganu River Basin, Malasya,” International Journal of Sediment Research, Vol. 25, No. 4, 2010, pp. 340-354.

[16]   S. Saha, S. Banerjee, S. D. Burley, A. Ghosh and P. L. Saraswati, “The Influence of Flood Basaltic Source Terrains on the Efficiency of Tectonic Setting Discrimination Diagrams: An Example from the Gulf of Khambhat, Western India,” Sedimentary Geology, Vol. 228, No. 1, 2010, pp. 1-13.

[17]   J. Lugo-Hubp, “El Relieve de la República Mexicana,” Revista del Instituto de Geología, UNAM, Vol. 9, 1990, pp. 82-111 (in Spanish).

[18]   A. Yánez-Arancibia and J. W. Day, “Environmental Sub-Regions in the Gulf of Mexico Coastal Zone the Ecosystem Approach as an Integrated Management Tool,” Ocean and Coastal Management, Vol. 47, No. 11-12, 2004, pp. 727-757.

[19]   A. Fernández-Eguiarte, A. Gallegos-García and J. Zavala-Hidalgo, “Oceanografía Física (Masas de Agua y Mareas de los Mares Mexicanos) IV.9.1, escala 1: 4000.000, Atlas Nacional de México, México,” Instituto de Geografía, Universidad Nacional Autónoma de México, 1 Map, 1992 (in Spanish).

[20]   G. Pérez-Villegas, “Wind Sheet IV.4.2, Vientos Dominantes 1:4 000.000. Atlas Nacional de México,” Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad de México, 1990 (in Spanish).

[21]   F. J. Pettijohn, P. E. Potter and R. Siever, “Sand and Sandstone,” Springer Verlag, New York, 1972.

[22]   A. Basu, “Petrology of Holocene Fluvial Sand Derived from Plutonic Source Rocks: Implications to Paleoclimatic Interpretation,” Journal of Sedimentary Petrology, Vol. 46, No. 3, 1976, pp. 694-709.

[23]   E. Franzinelli and P. E. Potter, “Petrology, Chemistry and Texture of Modern River Sands, Amazon River System,” Journal of Geology, Vol. 91, No. 1, 1983, pp. 23-29.

[24]   G. J. Weltje, “Quantitative Analysis of Detrital Modes: Statistically Rigorous Confidence Regions in Ternary Diagrams and Their Use in Sedimentary Petrology,” Earth Science Reviews, Vol. 57, No. 3, 2002, pp. 211-253.

[25]   S. R. Taylor and S. M. McLennan, “The Continental Crust: Its Composition and Evolution,” Blackwell, Oxford, 1985.

[26]   B. P. Roser and R. J. Korsch, “Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discrimination Function Analysis of Major-Element Data,” Chemical Geology, Vol. 67, No. 1-2, 1988, pp. 119-139.

[27]   T. S. Ahlbrandt, “Textural Parameters of Aeolian Deposits,” In: E. D. McKee, Ed., A Study of Global Sand Seas, Geological Survey Professional Paper 1052, pp. 21-58.

[28]   W. N. Bascom, “The Relationship between Sand Size and Beach Face Slope,” Transactions of the American Geophysical Union, Vol. 32, No. 6, 1951, pp. 876-864.

[29]   J. J. Kasper-Zubillaga, A. Carranza-Edwards and L. Rosales-Hoz, “Petrography and Geochemistry of Holocene Sands in the Western Gulf of México: Implications of Provenance and Tectonic Setting,” Journal of Sedimentary Research, Vol. 69, No. 5, 1999, pp. 1003-1010.

[30]   J. J. Kasper-Zubillaga, H. Zolezzi-Ruiz, A. C. Edwards, P. G. García, G. V. Ortiz-Zamora and M. Palma, “Sedimentological, Modal Analysis and Geochemical Studies of Desert and Coastal Dunes, Altar Desert, NW México,” Earth Surface Processes and Landforms, Vol. 32, No. 4, 2007, pp. 598-508. http://dx.doi.org/10.1002/esp.1402

[31]   X. Wang, Z. Dong, J. Zhang, J. Qu and A. Zhao, “Grain Size Characteristics of Dune Sands in the Central Taklimakan Sand Sea,” Sedimentary Geology, Vol. 161, No. 1, 2003, pp. 1-14.

[32]   P. E. Potter, “South America and a Few Grains of Sand: Part 1-Beach Sands,” Journal of Geology, Vol. 94, No. 3, 1986, pp. 301-319. http://dx.doi.org/10.1086/629031

[33]   S. Ghosh and S. Sarkar, “Geochemistry of Permo-Triassic Mudstone of the Satpura Gondwana Basin, Central India: Clues for Provenance,” Chemical Geology, Vol. 277, No. 1, 2010, pp. 78-100.

[34]   E. Le Pera and S. Critelli, “Sourceland Controls on the Composition of Beach and Fluvial Sand of the Northern Tyrrenian Coast of Calabria, Italy: Implications for Actualistic Petrofacies,” Sedimentary Geology, Vol. 110, No. 1-2, 1997, pp. 81-97.

[35]   W. K. Fletcher, M. Church and J. Wolcott, “Fluvial-Transport Equivalence of Heavy Minerals in the Sand Size Range,” Canadian Journal of Earth Sciences, Vol. 29, No. 9, 1992, 2017-2021.

[36]   J. J. Kasper-Zubillaga, B. Acevedo-Vargas, O. M. Bermea and G. Ortiz Zamora, “Rare Earth Elements of the Altar Desert Dune and Coastal Sands, Northwestern Mexico,” Chemie Der Erde—Geochemistry, Vol. 68, No. 1, 2008, pp. 45-59.

[37]   S. M. McLennan, S. Hemming, D. K. McDaniel and G. N. Hanson, “Geochemical Approaches to Sedimentation, Provenance and Tectonics,” In: M. J. Johnsson and, A. Basu, Eds., Processes Controlling the Composition of Clastic Sediments, Special Paper 284, Colorado Geological Society of America, Boulder, pp. 21-40.

[38]   E. R. Force, R. F. Butler, R. L. Reynolds and R. S. Houston, “Magnetic Ilmenite-Hematite Detritus in Mezosoic-Tertiary Placer and Sandstone-Hosted Uranium Deposits of the Rocky Mountains,” Economic Geology, Vol. 96, No. 6, 2001, pp. 1445-1453.

[39]   D. García, C. Ravenne, B. Maréchal and J. Moute, “Geochemical Variability Induced by Entrainment Sorting: Quantified Signals for Provenance Analysis,” Sedimentary Geology, Vol. 171, No. 1-4, 2004, pp. 113-128.

[40]   A. Basu and E. Molinaroli, “Provenance Characteristics of Detrital Opaque Fe-Ti Oxide Minerals,” Journal of Sedimentary Petrology, Vol. 59, No. 6, 1989, pp. 922-934.

[41]   J. D. Grigsby, “Detrital Magnetite as a Provenance Indicator,” Journal of Sedimentary Petrology, Vol. 60, No. 6, 1990, pp. 940-951.

[42]   R. Nath-Hota, B. Kumar Das, M. Sahoo and W. Maejima, “Provenance Variability during Damuda Sedimentation in the Talchir Godwana Basin, India—A Statistical Assessment,” International Journal of Geosciences, Vol. 2, No. 2, 2011, pp. 120-137.

[43]   J. Veizer, “Secular Variations in the Composition of Sedimentary Carbonate Rocks II Fe, Mn, Ca, Mg, Si and Minor Constituents,” Precambrian Research, Vol. 6, No. 3-4, 1978, pp. 411-449.

[44]   N. Etemad-Saeed, M. Hosseini-Barzi and J. S. Armstrong-Altrin, “Petrography and Geochemistry of Clastic Sedimentary Rocks as Evidences for Provenance of the Lower Cambrian Lalun Formation, Posht-e-Badam Block, Central Iran,” Journal of African Earth Sciences, Vol. 61, No. 2, 2011, pp. 142-159.

[45]   R. L. Lawrence, R. Cox, R. W. Mapes and D. S. Coleman, “Hydrodynamic Fractionation of Zircon Age Populations,” Geological Society of America Bulletin, Vol. 123, No. 1-2, 2011, pp. 295-305.

[46]   J. S. Armstrong-Altrin, Y. I. Lee, J. J. Kasper-Zubillaga , G. Nelson Eby, D. Garcia, A. Carranza-Edwards, V. Balaram and N. L. Cruz-Ortiz, “Geochemical Composition of Beach Sands from the Western Gulf of Mexico, Mexico: Implication for Provenance,” Chemie Der Erde— Geochemistry, Vol. 72, No. 4, 2012, 345-362.

[47]   A. I. M. Akarish and A. M. El-Gohary, “Provenance and Source Area Weathering Derived from the Geochemistry of Pre-Cenomanian Sandstones, East Sinai, Egypt,” Journal of Applied Sciences, Vol. 11, No. 17, 2011, pp. 3070-3088. http://dx.doi.org/10.3923/jas.2011.3070.3088

[48]   A. J. King, D. G. Wagoneer and M. O. García, “Geochemistry and Petrography of Basalts from Leg 146. Central Pacific Ocean,” Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 136, 1993.

[49]   M. H. Carr and K. K. Turekian, “The Geochemistry of Cobalt,” Geochimica et Cosmochimica Acta, Vol. 23, No. 1-2, 1961, pp. 9-60.

[50]   M. J. J. Rahman and S. Suzuki, “Composition of the Neogene Shales from the Surma Group, Bengal Basin, Bangladesh: Implications for Provenance and Tectonic Setting,” Australian Journal of Earth Sciences, Vol. 100, 2007, pp. 54-64.

[51]   J. V. Owen, K. L. Irwin, C. L. Flint and G. E. Greenough, “Trace Element Constraints on the Source of the Source Silica Sand Used by the Boston and Sandwich Glass Co. (c. 1826-1888),” The Journal of the Society for Industrial Archeology, Vol. 31, 2005.

[52]   R. Nagarajan, J. Madhavaraju, R. Nagendra, J. S. Armstrong-Altrin and J. Moutte, “Geochemistry of Neoproterozoic Shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, Southern India: Implications for Provenance and Paeleoredox Conditions,” Revista Mexicana de Ciencias Geológicas, Vol. 24, No. 2, 2007, pp. 150-160.

[53]   R. L. Cullers, “The Chemical Signature of Source Rocks in Size Fractions of Holocene Stream Sediment Derived from Metamorphic Rocks in the West Mountains Region, USA,” Chemical Geology, Vol. 113, No. 3-4, 1994, pp. 327-343. http://dx.doi.org/10.1016/0009-2541(94)90074-4

[54]   R. L. Cullers, “The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies,” Lithos, Vol. 51, No. 3, 2000, pp. 181-203.

[55]   M. N. Evensen, P. J. Hamilton and R. K. O’Nions, “Rare Earth Abundance in Chondrite Meteorites,” Geochimica et Cosmochimica Acta, Vol. 42, No. 8, 1978, pp. 1199-1212. http://dx.doi.org/10.1016/0016-7037(78)90114-X

[56]   S. Y. Yang, H. S. Jung, M. S. Choi and C. X. Li. “The Rare Earth Compositions of the Changjiang (Yangtze) and Huanghe (Yellow) River Sediments,” Earth and Planetary Science Letters, Vol. 201, No. 2, 2002, pp. 407-419. http://dx.doi.org/10.1016/S0012-821X(02)00715-X

[57]   P. D. Roy and W. Smykatz-Kloss, “REE Geochemistry of the Recent Playa Sediments from the Thar Desert, India: An Implication to Playa Sediment Provenance,” Chemie Der Erde—Geochemistry, Vol. 67, No. 1, 2007, pp. 55-68.

[58]   H. W. Nesbitt and G. Young, “Early Proterozoic Climate and Plate Motions Inferred from Major Chemistry of Lutites,” Nature, Vol. 279, No. 1, 1996, pp. 715-717.

[59]   B. P. Ruxton, “Labile Quartz-Poor Sediments from Young Mountain Ranges in Northeast Papua,” Journal of Sedimentary Petrology, Vol. 40, No. 4, 1970, pp. 1262-1270.

[60]   D. C. Isidore Ilouga, C. E. Suh and G. R. Tanwi, “Textures and Rare Earth Elements Composition of Banded Iron Formations (BIF) at Njweng Prospect, Mbalam Iron ore District, Souther Cameroon,” International Journal of Geosciences, Vol. 4, No. 1, 2013, pp. 146-165.

[61]   R. Nagarajan, J. S. Armstrong-Altrin, R. Nagendra, J. Madhavaraju and J. Moutte, “Petrography and Geochemistry of Terrigenous Sedimentary Rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, Southern India: Implications for Paleoweathering Condition, Provenance, and Source Rock Composition,” Journal of the Geological Society of India, Vol. 70, No. 2, 2007, pp. 297-312.

[62]   M. Honda, S. Yabuki and H. Shimizu, “Geochemical and Isotopic Studies of Aeolian Sediments in China,” Sedimentology, Vol. 51, No. 2, 2004, pp. 211-230.