The Arithmetic Mean Standard Deviation Distribution: A Geometrical Framework

Show more

References

[1] C. W. Misner, J. A. Wheeler and K. S. Thorne, “Gravitation,” W.H. Freeman & Company, 1973.

[2] B. Greene, “The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory,” W.W. Norton, 1999.

[3] J. Douthett and R. Krantz, “Energy Extremes and Spin Configurations for the One-Dimensional Antiferromagnetic Ising Model with Arbitrary-Range Interactions,” Journal of Mathematical Physics, Vol. 37, No. 7, 1996, pp. 3334-3353. http://dx.doi.org/10.1063/1.531568

[4] A. M. Kosevich, “The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.

[5] C. Callender, I. Quinn and D. Tymoczko, “Generalized Voice-Leading Spaces,” Science, Vol. 320, No. 5874, 2008, pp. 346-348.

http://dx.doi.org/10.1126/science.1153021

[6] A. Papoulis, “Probabilities, Random Variables, and Stochastic Processes,” McGraw-Hill, New York, 1965.

[7] B. Gnedenko, “The Theory of Probability,” Mir, Moscow, 1978.

[8] R. Caimmi, “Il Problema della Misura,” Diade, Nuova Vita, Padova, 2000.

[9] V. Smirnov, “Cours de Mathèmatiques Supèrieures,” Tome II, Mir, Moscow, 1970.

[10] B. B. Mandelbrot, “Les Objects Fractals: Forme, Hazard et Dimensions,” 2nd Edition, Flammarion, Paris, 1986.

[11] M. R. Spiegel, “Mathematical Handbook of Formulas and Tables,” Schaum’s Outline Series, McGraw-Hill, New York, 1969.