CE  Vol.4 No.10 , October 2013
Concerns, Knowledge, and Efficacy: An Application of the Teacher Change Model to Data Driven Decision-Making Professional Development
ABSTRACT
The purpose of this theoretical and qualitative work was two-fold. First, the Triadic Change Model (TCM) was presented and explained. Second, the TCM was used to develop an assessment framework in order to evaluate teachers’ status in the change process associated with the adoption of Data Driven Decision Making (DDDM) in the United States. One dominant profile emerged through the use of the TCM assessment framework. In this profile, teachers manifested concerns indicating they were reluctant to engage in DDDM, held moderate efficacy for DDDM, experienced moderate levels of anxiety associated with DDDM, and showed low levels of knowledge required for effective DDDM. Research-based recommendations for practice and future research are discussed for this profile.

Cite this paper
Dunn, K. , Airola, D. & Garrison, M. (2013). Concerns, Knowledge, and Efficacy: An Application of the Teacher Change Model to Data Driven Decision-Making Professional Development. Creative Education, 4, 673-682. doi: 10.4236/ce.2013.410096.
References
[1]   Airola, D. T., & Dunn, K. E. (2011). Oregon DATA project final evaluation report. Fayetteville, AR: Next Level Evaluation, Inc.
http://oregondataproject.org/files/data.k12partners.org/2011-0909_FinalStateReport.docx

[2]   Airola, D., Dunn, K. E., & Garrison, M. (2011). 3D-ME: The validation of the Data Driven Decision-Making Efficacy questionnaire. Washington, DC: the American Psychological Association Convention.

[3]   Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
http://dx.doi.org/10.1016/0749-5978(91)90020-T

[4]   Anderson, S., Leithwood, K., & Strauss, T. (2010). Leading data use in schools: Organizational conditions and practices at the school and district levels. Leadership and Policy in Schools, 9, 292-327.
http://dx.doi.org/10.1080/15700761003731492

[5]   Aumann, C. A. (2011). Constructing model credibility in the context of policy appraisal. Environmental Modeling and Software, 26, 258-265.
http://dx.doi.org/10.1016/j.envsoft.2009.09.006

[6]   Aydin, Y. C., Uzuntiryaki, E., & Demirdogen, B. (2011). Interplay of motivational and cognitive strategies in predicting self-efficacy and anxiety. Educational Psychology, 31, 55-66.
http://dx.doi.org/10.1080/01443410.2010.518561

[7]   Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W. H. Freeman and Company.

[8]   Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.

[9]   Bandura, A. (1978). The self system in reciprocal determinism. American Psychologist, 33, 343-358.
http://dx.doi.org/10.1037/0003-066X.33.4.344

[10]   Beck, J., Czerniak, C. M., & Lumpe, A. T. (2000). An exploratory study of teachers’ beliefs regarding the implementation of constructivism in their classrooms. Journal of Science Teacher Education, 11, 323-343. http://dx.doi.org/10.1023/A:1009481115135

[11]   Bernhardt, V. L. (2009). Data use: Data-driven decision making takes a big-picture view of the needs of teachers and students. Journal of Staff Development, 30, 24-27.

[12]   Boz, Y., & Boz, N. (2010). The nature of the relationship between teaching concerns and sense of efficacy. European Journal of Teacher Education, 33, 279-291.
http://dx.doi.org/10.1080/02619768.2010.490910

[13]   Bruning, R., Schraw, G., & Ronning, R. (1999). Cognitive psychology and instruction. Upper Saddle River, NJ: Prentice Hall.

[14]   Carlson, D., Borman, G., & Robinson, M. (2011). A multistate district-level cluster randomized trial of the impact of data-driven reform on reading and mathematics achievement. Educational Evaluation and Policy Analysis, 33, 378-398.
http://dx.doi.org/10.3102/0162373711412765

[15]   Charalambos, C., Philippou, G., & Kyriakides, L. (2004). Towards a unified model on teachers’ concerns and efficacy beliefs related to mathematics reform. Proceedings of International Group for the Psychology of Mathematics Education, 2, 199-206

[16]   Chuang, A., Liao, W., & Tai, W. (2005). An investigation of individual and contextual factors influencing training. Social Behavior and Personality, 33, 159-173.
http://dx.doi.org/10.2224/sbp.2005.33.2.159

[17]   Cousins, B., & Walker, C. (2000). Predictors of educators’ valuing of systematic inquiry in schools. Canadian Journal of Program Evaluation, Special Issue, 25-52.

[18]   Creighton, T. B. (2007). Schools and data: The educator’s guide for using data to improve decision-making (2nd ed.). Thousand Oaks, CA: Corwin Press.

[19]   Cromey, A., Van der Ploeg, A., & Masini, B. (2000). The Call for Data-Driven Decision Making in the Midwest’s Schools: NCREL’s Response. Oak Brooks, IL: North Central Regional Educational Laboratory.

[20]   Cunningham, A. E., Zibulsky, J., & Callahan, M. D. (2009). Starting small: Building preschool teacher knowledge that supports literacy development. Reading and Writing, 22, 487-510.
http://dx.doi.org/10.1007/s11145-009-9164-z

[21]   Dembosky, J. W., Pane, J. F., Barney, H., & Christina, R. (2005). Data driving decision-making in southwestern Pennsylvania school districts. Santa Monica, CA: RAND.

[22]   Dunn, K. E. (2008). The implementation of learner-centered principles: An analysis of preservice teacher beliefs and concerns. Doctoral Dissertation, ProQuest Dissertations and Theses, 3328225.
http://search.proquest.com/docview/304576195?accountid=8361

[23]   Dunn, K. E.,Airola, D., Garrison, M., & Nickens, B. (2011). Becoming data-driven: The influence of data-driven decision making efficacy beliefs on teachers’ consequence concerns. Washington, DC: The American Psychological Association Convention.

[24]   Dunn, K. E., Airola, D. T., Lo, W., & Garrison, M. (2013a). Becoming data-driven: Exploring teacher efficacy and concerns related to datadriven decision making. Journal of Experimental Education, 81, 222241. http://dx.doi.org/10.1080/00220973.2012.699899

[25]   Dunn, K. E., Airola, D. T., Lo, W. J., & Garrison, M. (2013b). What teachers think about what they can do with data: Development and validation of the data driven decision-making efficacy and anxiety inventory. Contemporary Educational Psychology, 38, 87-98.
http://dx.doi.org/10.1016/j.cedpsych.2012.11.002

[26]   Dunn, K. E., & Rakes, G. C. (2011). Teaching teachers: An investigation of beliefs in teacher education students. Learning Environments Research, 14, 39-58. http://dx.doi.org/10.1007/s10984-011-9083-1

[27]   Espin, C. A., McMaster, K. L., Rose, S. & Wayman, M. M. (2012). A measure of success: The influence of curriculum-based measurement on education. Minneapolis, MN: University of Minnesota Press.

[28]   George, A. A., Hall, G. E., & Stiegelbauer, S. M. (2006). Measuring implementation in schools: The stages of concern questionnaire. Austin, TX: Southwest Educational Development Laboratory.

[29]   Gresham, G. (2009). An examination of mathematics teacher efficacy and mathematics anxiety in elementary pre-service teachers. Journal of Classroom Interaction, 44, 22-38.

[30]   Hall, G. E., George, A. A., & Rutherford, W. L. (1979). Measuring Stages of Concern about the innovation: A manual for use of the SoC Questionnaire. Austin, TX: University of Texas.

[31]   Hall, G. E., & Hord, S. M. (1987). Change in schools: Facilitating the process. New York: State University of New York Press.

[32]   Hall, G., & Hord, S. (2011). Implementing change: Patterns, principles, and potholes (3rd ed.). Needham Heights, MA: Allyn and Bacon.

[33]   Hall, G. E., Wallace, R. C., & Dossett, W. A. (1973). A developmental conceptualization of the adoption process within educational institutions. Austin, TX: University of Texas.

[34]   Ingram, D., Louis, K. S., & Schroeder, R. G. (2004). Accountability policies and teacher decision making: Barrier to the use of data to improve practice. Teachers College Record, 106, 1258-1287.
http://dx.doi.org/10.1111/j.1467-9620.2004.00379.x

[35]   Kerr, K. A., Marsh, J. A., Ikemoto, G. S., Darilek, H., & Barney, H. (2006). Strategies to promote data use for instructional improvement: Actions, outcomes, and lessons from three urban districts. American Journal of Education, 112, 496-520.
http://dx.doi.org/10.1086/505057

[36]   Learner, D. K., & Timberlake, L. M. (1995). Teachers with limited computer knowledge: Variables affecting use and hints to increase use.

[37]   Latham, G. P., Millman, Z., & Miedema, H. (1998). Theoretical, practical and organizational issues affecting training. In C. J. De Wolff, P. J. D. Drenth, & H. Thierry (Eds.), A handbook of work and organizational psychology: Personnel psychology, Vol. 3 (pp. 185-207). East Sussex: Psychology Press, Ltd.

[38]   Locke, E. A., & Latham, G. P. (1990) A theory of goal setting and task performance. Englewood Cliffs, NJ: Prentice-Hall.

[39]   Mandinach, E. (2011). Recent developments in how the field of educational psychology has contributed to educational policy debate and implementation. Washington, DC: The American Psychological Association Convention.

[40]   Mason, S. (2002). Turning data into knowledge: Lessons from six Milwaukee public schools. Madison, WI: Wisconsin Center for Education Research.

[41]   McKinney, M., Sexton, T., & Meyerson, M. J. (1999). Validating the efficacy-based change model. Teaching and Teacher Education, 15, 477-485. http://dx.doi.org/10.1016/S0742-051X(98)00051-1

[42]   Murphy, P. K. (2001). Teaching as persuasion: A new metaphor for a new decade. Theory into Practice, 40, 224-277.
http://dx.doi.org/10.1207/s15430421tip4004_2

[43]   Nunnally, J. C. (1967). Psychometric theory. New York: McGraw-Hill.

[44]   Ohlhausen, M. M., Meyerson, M. J., & Sexton, T. (1992). Viewing innovations through the Efficacy-Based Change Model: A whole language application. Journal of Reading, 35, 536-541.

[45]   Pajares, E., & Schunk, D. H. (2002). Self and self-belief in psychology and education: A historical perspective. In J. Aronson (Ed.), Improving academic achievement impact of psychological factors on education (pp. 3-21). Amsterdam: Academic Press.
http://dx.doi.org/10.1016/B978-012064455-1/50004-X

[46]   Pan, W., & Tang, M. (2004). Examining the effectiveness of innovative instructional methods on reducing statistics anxiety for graduate students in the social sciences. Journal of Instructional Psychology, 31, 149-159.

[47]   Pan, W., & Tang, M. (2005). Students’ perceptions on factors of statistics anxiety and instructional strategies. Journal of Instructional Psychology, 32, 205-214.

[48]   Raudenbush, S. W., Bhumirat, C., & Kamali, M. (1992). Predictors and consequences of primary teachers’ sense of efficacy and students’ perceptions of teaching quality in Thailand. International Journal of Educational Research, 17, 165-177.
http://dx.doi.org/10.1016/0883-0355(92)90006-R

[49]   Samuel, M. (2008). Accountability to whom? For what? Teacher identity and the force field model of teacher development. Perspectives in Education, 26, 3-16.

[50]   Sarikaya, H., Cakiroglu, J., & Tekkaya, C. (2005). Self-efficacy, attitude and science knowledge. Academic Exchange Quarterly, 9, 3842.

[51]   Schacht, S., &Stewart, B. J. (1990). What’s funny about statistics? A technique for reducing student anxiety. Teaching Sociology, 18, 5256. http://dx.doi.org/10.2307/1318231

[52]   Scherer, Y. K., & Bruce, S. (2001). Knowledge, attitudes, and selfefficacy and compliance with medical regimen, number of emergency department visits, and hospitalizations in adults with asthma. Heart Lung, 30, 250-257. http://dx.doi.org/10.1067/mhl.2001.116013

[53]   Scheurich, J. J., & Skrla, L. (2003). Leadership for equity and excellence: Creating high-achievement classrooms, schools, and districts. Thousands Oaks, CA: Corwin Press.

[54]   Schildkamp, K., & Kuiper, W. (2010). Data-informed curriculum reform: Which data, what purposes, and promoting and hindering factors. Teaching and Teacher Education, 26, 482-496.
http://dx.doi.org/10.1016/j.tate.2009.06.007

[55]   Schunk, D. H., & Zimmerman, B. J. (1994). Self-regulation of learning and performance: Issues and educational applications. Hillsdale, NJ: Erlbaum.

[56]   Silver, W. S., Mitchel, T. R., & Gist, M. E. (1995). Responses to successful and unsuccessful performances: The moderating effect of self-efficacy on the relationship between performance and attributions. Organizational Behavior and Human Decision Processes, 62, 286-299. http://dx.doi.org/10.1006/obhd.1995.1051

[57]   Stiggins, R. J. (2001). Student-involved classroom assessment (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

[58]   Supovitz, J. A., & Klein, V. (2003). Mapping a course for improved student learning: How innovative schools systematically use student performance data to guide improvement. Report, Philadelphia, PA: Consortium for Policy Research in Education.

[59]   Sztajn, P. (2003). Adapting reform ideas in different mathematics classrooms: Beliefs beyond mathematics. Journal of Mathematics Teacher Education, 6, 53-75.
http://dx.doi.org/10.1023/A:1022171531285

[60]   Tschannen-Moran, M., Hoy, A. W., & Hoy, W. K. (1998). Teacher efficacy: Its meaning and measure. Review of Educational Research, 68, 202-248. http://dx.doi.org/10.3102/00346543068002202

[61]   Tschannen-Moran, M., & Hoy, A. W. (2001). Teacher efficacy: Capturing an elusive construct. Teaching and Teacher Education, 17, 783-805. http://dx.doi.org/10.1016/S0742-051X(01)00036-1

[62]   Wayman, J. C. (2005). Involving teachers in data-driven decisionmaking: Using computer data systems to support teacher inquiry and reflection. Journal of Education for Students Placed At Risk, 10, 295308. http://dx.doi.org/10.1207/s15327671espr1003_5

[63]   Wayman, J. C., & Stringfield, S. (2006). Technology-supported involvement of entire faculties in examination of student data for instructional improvement. American Journal of Education, 112, 549571. http://dx.doi.org/10.1086/505059

[64]   Wilson, V. A. (November 1998). A study of reduction of anxiety in graduate students in an introductory educational research course. New Orleans, LA: The Annual Meeting of the Mid-South Educational Research Association.

[65]   Wilson, V. A., & Onwuegbuzie, A. J. (2001). Increasing and decreasing anxiety: A study of doctoral students in educational research courses. Little Rock, AR: The Annual Meeting of the Mid-South Educational Research Association.

[66]   Zielinski, E. J., & Bernardo, J. A. (1989). The effects of a summer inservice program on secondary science teachers’ Stages of Concern, attitudes, and knowledge of selected STS concepts and its impact on students’ knowledge. San Francisco, CA: The National Association for Research in Science Teaching.

[67]   Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25, 82-91.
http://dx.doi.org/10.1006/ceps.1999.1016

 
 
Top