AM  Vol.2 No.1 , January 2011
Numerical Solution for a FG Cylinder Problem Using Finite-Difference Method
Author(s) Daoud S. Mashat
ABSTRACT
A refined finite-difference approach is presented to solve the thermoelastic problem of functionally graded cylinders. Material properties of the present cylinder are assumed to be graded in the radial direction according to a power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The governing second-order differential equations are derived from the motion and the heat-conduction equations. Numerical results for dimensionless temperature, radial displacement, mechanical stresses and electromagnetic stress are distributed along the radial directions. The effects of time parameter and the functionally graded coefficient are investigated.

Cite this paper
nullD. Mashat, "Numerical Solution for a FG Cylinder Problem Using Finite-Difference Method," Applied Mathematics, Vol. 2 No. 1, 2011, pp. 123-130. doi: 10.4236/am.2011.21014.
References
[1]   G. Paria, “Magneto-Elasticity and Magneto-Thermo-Elasticity,” Advances in Applied Mechanics, Vol. 10, 1966, pp. 73-112. doi:10.1016/S0065-2156(08)70394-6

[2]   X. Wang, G. Lu and S. R. Guillow, “Magnetothermodynamic Stress and Perturbation of Magnetic Field Vector in a Solid Cylinder,” Journal of Thermal Stresses, Vol. 25, No. 10, 2002, pp. 909-926. doi:10.1080/0149573029 0074397

[3]   X. Wang and H. L. Dai, “Magnetothermodynamic Stress and Perturbation of Magnetic Field Vector in an Orthotropic Thermoelastic Cylinder,” International Journal of Engineering Science, Vol. 42, No. 5-6, 2004, pp. 539-556. doi:10.1016/j.ijengsci.2003.08.002

[4]   X. Wang and K. Dong, “Magnetothermodynamic Stress and Perturbation of Magnetic Field Vector in a Non-Homogeneous Thermoelastic Cylinder,” European Journal of Mechanics-A/Solids, Vol. 25, No. 1, 2006, pp. 98-109. doi:10.1016/j.euromechsol.2005.07.003

[5]   S. Banerjee and S. K. Roychoudhuri, “Magneto-Thermo-Elastic Interactions in an Infinite Isotropic Elastic Cylinder Subjected to a Periodic Loading,” International Journal of Engineering Science, Vol. 35, No. 4, 1997, pp. 437-444. doi:10.1016/S0020-7225(96)00070-5

[6]   H. L. Dai and Y. M. Fu, “Magnetothermoelastic Interactions in Hollow Structures of Functionally Graded Material Subjected to Mechanical Loads,” International Journal of Pressure Vessels and Piping, Vol. 84, No. 3, 2007, pp. 132-138. doi:10.1016/j.ijpvp.2006.10.001

[7]   P. F. Hou and A. Y. T. Leung, “The Transient Responses of Magneto-Electro-Elastic Hollow Cylinders,” Smart Materials and Structures, Vol. 13, No. 4, 2004, pp. 762-776. doi:10.1088/0964-1726/13/4/014

[8]   G. R. Buchanan, “Free Vibration of an Infinite Magneto-Electroelastic Cylinder,” Journal of Sound and Vibration, Vol. 268, No. 2, 2003, pp. 413-426. doi:10. 1016/S0022-460X(03)00357-2

[9]   A. R. Annigeri, N. Ganesan and S. Swarnamani, “Free Vibrations of Clamped-Clamped Magneto-Electro-Elastic Cylindrical Shells,” Journal of Sound and Vibration, Vol. 292, No. 1-2, 2006, pp. 300-314. doi:10.1016/j.jsv.2005. 07.043

[10]   P. F. Hou, H. J. Ding and A. Y. T. Leung, “The Transient Responses of a Special Non-Homogeneous Magneto-Electro-Elastic Hollow Cylinder for Axisymmetric Plane Strain Problem,” Journal of Sound and Vibration, Vol. 291, No. 1-2, 2006, pp. 19-47. doi:10.1016/j.jsv.2005. 05.022

[11]   M. R. Abd-El-Salam, A. M. Abd-Alla and H. A. Hosham, “A Numerical Solution of Magneto-Thermoelastic Problem in Non-Homogeneous Isotropic Cylinder by the Finite-Difference Method,” Applied Mathematical Modelling, Vol. 31, No. 8, 2007, pp. 1662-1670. doi:10.1016/j.apm. 2006.05.009

[12]   M. Higuchi, R. Kawamura and Y. Tanigawa, “Dynamic and Quasi-Static Behaviors of Magneto-Thermo-Elastic Stresses in a Conducting Hollow Circular Cylinder Subjected to an Arbitrary Variation of Magnetic Field,” International Journal of Mechanical Sciences, Vol. 50, No. 3, 2008, pp. 365-379.

[13]   R. K. Bhangale and N. Ganesan, “Free Vibration Studies of Simply Supported Non-Homogeneous Functionally Graded Magneto-Electro-Elastic Finite Cylindrical Shells,” Journal of Sound and Vibration, Vol. 288, No. 1-2, 2005, pp. 412-422. doi:10.1016/j.jsv.2005.04.008

[14]   T. Kong, D. X. Li and X. Wang, “Thermo-Magneto-Dynamic Stresses and Perturbation of Magnetic Field Vector in a Non-Homogeneous Hollow Cylinder,” Applied Mathematical Modelling, Vol. 33, No. 7, 2009, pp. 2939-2950. doi:10.1016/j.apm.2008.10.003

[15]   X. Wang and H. L. Dai, “Magneto-Thermo-Dynamic Stress and Perturbation of Magnetic Field Vector in a Hollow Cylinder,” Journal of Thermal Stresses, Vol. 3, 2004, pp. 269-288. doi:10.1080/01495730490423900

[16]   H. L. Dai and X. Wang, “Magneto-Thermo-Electro-Elastic Transient Response in a Piezoelectric Hollow Cylinder Subjected to Complex Loadings,” International Journal of Solids and Structures, Vol. 43, No. 18-19, 2006, pp. 5628-5646. doi:10.1016/j.ijsolstr.2005.06.092

[17]   S. B. Mukhopadhyay, “Thermoelastic Interactions without Energy Dissipation in an Unbounded Body with a Spherical Cavity Subjected to Harmonically Varying Temperature,” Mechanics Research Communications, Vol. 31, No. 1, 2004, pp. 81-89. doi:10.1016/S0093-6413(03) 00082-X

 
 
Top