ABB  Vol.4 No.10 C , October 2013
Role of TGF-β in breast cancer bone metastases
ABSTRACT

Breast cancer is the most prevalent cancer among females worldwide leading to approximately 350,000 deaths each year. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ~70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by increased fracture risk, pain, nerve compression and hypercalcemia, causing severe morbidity. In the bone matrix, transforming growth factor-β (TGF-β) is one of the most abundant growth factors, which is released in active form upon tumor-induced osteoclastic bone resorption. TGF-β, in turn, stimulates bone metastatic tumor cells to secrete factors that further drive osteolytic bone destruction adjacent to the tumor. Thus, TGF-β is a crucial factor responsible for driving the feed-forward vicious cycle of cancer growth in bone. Moreover, TGF-β activates epithelial-to-mesenchymal transition, increases tumor cell invasiveness and angiogenesis and induces immunosuppression. Blocking the TGF-β signaling pathway to interrupt this vicious cycle between breast cancer and bone offers a promising target for therapeutic intervention to decrease skeletal metastasis. This review will describe the role of TGF-β in breast cancer and bone metastasis, and pre-clinical and clinical data will be evaluated for the potential use of TGF-β inhibitors in clinical practice to treat breast cancer bone metastases.


Cite this paper
Chiechi, A. , Waning, D. , Stayrook, K. , Buijs, J. , Guise, T. and Mohammad, K. (2013) Role of TGF-β in breast cancer bone metastases. Advances in Bioscience and Biotechnology, 4, 15-30. doi: 10.4236/abb.2013.410A4003.
References
[1]   Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. (2011) Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69-90.
http://dx.doi.org/10.3322/caac.20107

[2]   Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Cooper, D., Gansler, T., Lerro, C., Fedewa, S., Lin, C., Leach C, Cannady, R.S., Cho, H., Scoppa, S., Hachey, M., Kirch, R., Jemal, A. and Ward, E. (2012) Cancer treatment and survivorship statistics. CA: A Cancer Journal for Clinicians, 62, 220-241.
http://dx.doi.org/10.3322/caac.21149

[3]   Ferguson, N.L., Bell, J., Heidel, R., Lee, S., Vanmete, S, Duncan, L., Munsey, B., Panella, T. and Orucevic, A. (2013) Prognostic value of breast cancer subtypes, Ki-67 proliferation index, age, and pathologic tumor characteristics on breast cancer survival in Caucasian women. Breast Journal, 19, 22-30.
http://dx.doi.org/10.1111/tbj.12059

[4]   Buijs, J.T. and Pluijm, G. (2009) Osteotropic cancers: From primary tumor to bone. Cancer Letters, 273, 177-193. http://dx.doi.org/10.1016/j.canlet.2008.05.044

[5]   Coleman, R.E. (1997) Skeletal complications of malignancy. Cancer, 80, 1588-1594.

[6]   Mundy, G.R. (2002) Metastasis to bone: Causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584-593. http://dx.doi.org/10.1038/nrc867

[7]   Oster, G., Lamerato, L., Glass, A.G., Richert-Boe, K.E., Lopez, A., Chung, K., Richhariya, A., Dodge, T., Wolff, G.G., Balakumaran, A. and Edelsberg, J. (2013) Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer.

[8]   Roodman, G.D. (2004) Mechanisms of bone metastasis. The New England Journal of Medicine, 350, 1655-1664.
http://dx.doi.org/10.1056/NEJMra030831

[9]   Korpal, M., Yan, J., Lu, X., Xu, S., Lerit, D.A. and Kang, Y. (2009) Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nature Medicine, 15, 960-966.
http://dx.doi.org/10.1038/nm.1943

[10]   Kang, Y., Siegel, P.M., Shu, W., Drobnjak, M., Kakonen, S.M., Cordon-Cardo, C., Guise, T.A. and Massague, J. (2003) A multigenic program mediating breast cancer metastasis to bone. Cancan Cell, 3, 537-549.
http://dx.doi.org/10.1016/S1535-6108(03)00132-6

[11]   Yin, J.J., Selander, K., Chirgwin, J.M., Dallas, M., Grubbs, B.G., Wieser, R., Massague, J., Mundy, G.R. and Guise, T.A. (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigationing, 103, 197-206. http://dx.doi.org/10.1172/JCI3523

[12]   Yingling, J.M., Blanchard, K.L. and Sawyer, J.S. (2004) Development of TGF-beta signalling inhibitors for cancer therapy. Nature Reviews Drug Discovery, 3, 1011-1022.
http://dx.doi.org/10.1038/nrd1580

[13]   Massague, J., Blain, S.W. and Lo, R.S. (2000) TGF beta signaling in growth control, cancer, and heritable disorders. Cell, 103, 295-309.
http://dx.doi.org/10.1016/S0092-8674(00)00121-5

[14]   Blobe, G.C., Schiemann, W.P. and Lodish, H.F. (2000) Role of transforming growth factor beta in human disease. The New England Journal of Medicine, 342, 1350-1358.
http://dx.doi.org/10.1056/NEJM200005043421807

[15]   Dijke, P. and Arthur, H.M. (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nature Reviews Molecular Cell Biology, 8, 857-869.
http://dx.doi.org/10.1038/nrm2262

[16]   Massague, J. (2000) How cells read TGF-beta signals. Nature Reviews Molecular Cell Biology, 1, 169-178.
http://dx.doi.org/10.1038/35043051

[17]   Feng, X.H. and Derynck, R. (2005) Specificity and versatility in tgf-beta signaling through Smads. Annual Review of Cell and Developmental Biology, 21, 659-693.
http://dx.doi.org/10.1146/annurev.cellbio.21.022404.142018

[18]   Shi, Y. and Massague, J. (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113, 685-700.
http://dx.doi.org/10.1016/S0092-8674(03)00432-X

[19]   Wu, M.Y. and Hill, C.S. (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Developmental Cell, 16, 329-343.
http://dx.doi.org/10.1016/j.devcel.2009.02.012

[20]   Derynck, R. and Zhang, Y.E. (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425, 577-584.
http://dx.doi.org/10.1038/nature02006

[21]   Hinck, A.P. (2012) Structural studies of the TGF-bs and their receptors—Insights into evolution of the TGF-b superfamily. FEBS Letters, 586, 1860-1870.
http://dx.doi.org/10.1016/j.febslet.2012.05.028

[22]   Ikushima, H., Komuro, A., Isogaya, K., Shinozaki, M., Hellman, U., Miyazawa, K. and Miyazono, K. (2008) An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-beta signalling. EMBO Journal, 27, 2955-2965. http://dx.doi.org/10.1038/emboj.2008.218

[23]   Ikushima, H. and Miyazono, K. (2010) TGF beta signalling: A complex web in cancer progression. Nature Reviews Cancer, 10, 415-424.
http://dx.doi.org/10.1038/nrc2853

[24]   Wakefield, L.M. and Hill, C.S. (2013) Beyond TGFβ: Roles of other TGFβ superfamily members in cancer. Nature Reviews Cancer, 13, 328-341.
http://dx.doi.org/10.1038/nrc3500

[25]   Daly, A.C., Randall, R.A. and Hill, C.S. (2008) Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Molecular and Cellular Biology, 28, 6889-6902.
http://dx.doi.org/10.1128/MCB.01192-08

[26]   Liu, I.M., Schilling, S.H., Knouse, K.A., Choy, L., Derynck, R. and Wang, X.F. (2009) TGF beta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO Journal, 28, 88-98.
http://dx.doi.org/10.1038/emboj.2008.266

[27]   Pardali, E., Goumans, M.J. and Dijke, P. (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends in Cell Biology, 20, 556-567. http://dx.doi.org/10.1016/j.tcb.2010.06.006

[28]   Goumans, M.J., Valdimarsdottir, G., Itoh, S., Lebrin, F., Larsson, J., Mummery, C., Karlsson, S. and Dijke, P. (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Molecular Cell, 12, 817-828.
http://dx.doi.org/10.1016/S1097-2765(03)00386-1

[29]   Goumans, M.J., Valdimarsdottir, G., Itoh, S., Rosendahl, A., Sideras, P. and Dijke, P. (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO Journal, 21, 1743-1753.
http://dx.doi.org/10.1093/emboj/21.7.1743

[30]   Kang, J.S., Liu, C. and Derynck, R. (2009) New regulatory mechanisms of TGF-beta receptor function. Trends in Cell Biology, 19, 385-394.
http://dx.doi.org/10.1016/j.tcb.2009.05.008

[31]   Lee, M.K., Pardoux, C., Hall, M.C., Lee, P.S., Warburton, D., Qing, J., Smith, S.M. and Derynck, R. (2007) TGFbeta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO Journal, 26, 3957-3967.
http://dx.doi.org/10.1038/sj.emboj.7601818

[32]   Sorrentino, A., Thakur, N., Grimsby, S., Marcusson, A., von Bulow, V., Schuster, N., Zhang, S., Heldin, C.H. and Landstrom, M. (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology, 10, 1199-1207.
http://dx.doi.org/10.1038/ncb1780

[33]   Yamashita, M., Fatyol, K., Jin, C., Wang, X., Liu, Z. and Zhang, Y.E. (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Molecular Cell, 31, 918-924.
http://dx.doi.org/10.1016/j.molcel.2008.09.002

[34]   Vergara, D., Merlot, B., Lucot, J.P., Collinet, P., Vinatier, D., Fournier, I. and Salzet, M. (2010) Epithelial-mesenchymal transition in ovarian cancer. Cancer Letter, 291, 59-66. http://dx.doi.org/10.1016/j.canlet.2009.09.017

[35]   Xu, J., Lamouille, S. and Derynck, R. (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Research, 19, 156-172. http://dx.doi.org/10.1038/cr.2009.5

[36]   Moustakas, A. and Heldin, C.H. (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 98, 1512-1520.
http://dx.http://dx.doi.org/10.1111/j.1349-7006.2007.00550.x

[37]   Vincent, T., Neve, E.P., Johnson, J.R., Kukalev, A., Rojo, F., Albanell, J., Pietras, K., Virtanen, I., Philipson, L., Leopold, P.L., Crystal, R.G., de Herreros, A.G., Moustakas, A., Pettersson, R.F. and Fuxe, J. (2009) A SNAIL1SMAD3/4 transcriptional repressor complex promotes TGF-b mediated epithelial-mesenchymal transition. Nature Cell Biology, 11, 943-950.
http://dx.http://dx.doi.org/10.1038/ncb1905

[38]   Bracken, C.P., Gregory, P.A., Kolesnikoff, N., Bert, A.G., Wang, J., Shannon, M.F. and Goodall, G.J. (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68, 7846-7854.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-08-1942

[39]   Moustakas, A. and Heldin, C.H. (2012) Induction of epithelial-mesenchymal transition by transforming growth factor beta. Seminars in Cancer Biology, 22, 446-454.
http://dx.http://dx.doi.org/10.1016/j.semcancer.2012.04.002

[40]   Horiguchi, K., Sakamoto, K., Koinuma, D., Semba, K., Inoue, A., Inoue, S., Fujii, H., Yamaguchi, A., Miyazawa, K., Miyazono, K. and Saitoh, M. (2012) TGF-β drives epithelial-mesenchymal transition through deltaEF1-mediated downregulation of ESRP. Oncogene, 31, 3190-3201. http://dx.http://dx.doi.org/10.1038/onc.2011.493

[41]   Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H.R., Zhang, Y. and Wrana, J.L. (2005) Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science, 307, 1603-1609.
http://dx.http://dx.doi.org/10.1126/science.1105718

[42]   Katsuno, Y., Lamouille, S. and Derynck, R. (2013) TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Current Opinion in Oncology, 25, 76-84.
http://dx.http://dx.doi.org/10.1097/CCO.0b013e32835b6371

[43]   Netherton, S.J. and Bonni, S. (2010) Suppression of TGFβ-induced epithelial-mesenchymal transition like phenotype by a PIAS1 regulated sumoylation pathway in NMuMG epithelial cells. PLoS ONE, 5, e13971.
http://dx.http://dx.doi.org/10.1371/journal.pone.0013971

[44]   Derynck, R. and Akhurst, R.J. (2007) Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nature Cell Biology, 9, 1000-1004.
http://dx.http://dx.doi.org/10.1038/ncb434

[45]   Massague, J. and Chen, Y.G. (2000) Controlling TGFbeta signaling. Genes & Development, 14, 627-644.

[46]   Massague, J. (2008) TGFbeta in Cancer. Cell, 134, 215-230. http://dx.http://dx.doi.org/10.1016/j.cell.2008.07.001

[47]   Thiery, J.P., Acloque, H., Huang, R.Y. and Nieto, M.A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871-890.
http://dx.http://dx.doi.org/10.1016/j.cell.2009.11.007

[48]   Yang, Y.A., Dukhanina, O., Tang, B., Mamura, M., Letterio, J.J., MacGregor, J., Patel, S.C., Khozin, S., Liu, Z.Y., Green, J., Anver, M.R., Merlino, G. and Wakefield, L.M. (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. Journal of Clinical Investigation, 109, 1607-1615.

[49]   Gorska, A.E., Jensen, R.A., Shyr, Y., Aakre, M.E., Bhowmick, N.A. and Moses, H.L. (2003) Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. American Journal of Pathology, 63, 1539-1549.
http://dx.http://dx.doi.org/10.1016/S0002-9440(10)63510-9

[50]   Lenferink, A.E., Magoon, J., Pepin, M.C., Guimond, A. and O’Connor-McCourt, M.D. (2003) Expression of TGF-beta type II receptor antisense RNA impairs TGFbeta signaling in vitro and promotes mammary gland differentiation in vivo. International Journal of Cancer, 107, 919-928.
http://dx.http://dx.doi.org/10.1002/ijc.11494

[51]   Muraoka, R.S., Koh, Y., Roebuck, L.R., Sanders, M.E., Brantley-Sieders, D., Gorska, A.E., Moses, H.L. and Arteaga, C.L. (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Molecular and Cellular Biology, 23, 8691-8703.
http://dx.http://dx.doi.org/10.1128/MCB.23.23.8691-8703.2003

[52]   Siegel, P.M., Shu, W., Cardiff, R.D., Muller, W.J. and Massague, J. (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100, 8430-8435.
http://dx.http://dx.doi.org/10.1073/pnas.0932636100

[53]   Zakharchenko, O., Cojoc, M., Dubrovska, A. and Souchelnytskyi, S. (2013) A role of TGFβ1 dependent 14-3-3σ phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance. PLoS ONE, 8, e65163.
http://dx.http://dx.doi.org/10.1371/journal.pone.0065163

[54]   Wang, Y. and Lui, W.Y. (2012) Transforming growth factor-β1 attenuates junctional adhesion molecule-A and contributes to breast cancer cell invasion. European Journal of Cancer, 48, 3475-3487.
http://dx.http://dx.doi.org/10.1016/j.ejca.2012.04.016

[55]   Johansson, J., Berg, T., Kurzejamska, E., Pan, M.F., Tabor, V., Jansson, M., Roswall, P., Pietras, K., Sund, M., Religa, P. and Fuxe. J. (2013) MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene.

[56]   Forrester, E., Chytil, A., Bierie, B., Aakre, M., Gorska, A.E., Sharif-Afshar, A.R., Muller, W.J. and Moses, H.L. (2005) Effect of conditional knockout of the type II TGFbeta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Research, 65, 2296-2302.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-04-3272

[57]   Muraoka-Cook, R.S., Shin, I., Yi, J.Y., Easterly, E., Barcellos-Hoff, M.H., Yingling, J.M., Zent, R. and Arteaga, C.L. (2006) Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene, 25, 3408-3423. http://dx.http://dx.doi.org/10.1038/sj.onc.1208964

[58]   Gorsch, S.M., Memoli, V.A., Stukel, T.A., Gold, L.I. and Arrick, B.A. (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Research, 52, 6949-6952.

[59]   Tan, A.R., Alexe, G. and Reiss, M. (2009) Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Research and Treatment, 115, 453-495.
http://dx.http://dx.doi.org/10.1007/s10549-008-0184-1

[60]   Travers, M.T., Barrett-Lee, P.J., Berger, U., Luqmani, Y.A., Gazet, J.C., Powles, T.J. and Coombes RC. (1988) Growth factor expression in normal, benign, and malignant breast tissue. British Medical Journal, 296, 1621-1624. http://dx.http://dx.doi.org/10.1136/bmj.296.6637.1621

[61]   Jong, J.S., Diest, P.J., Valk, P. and Baak, J.P. (1998) Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. The Journal of Pathology, 184, 53-57.
http://dx.http://dx.doi.org/10.1002/(SICI)1096-9896(199801)184:1<53::AID-PATH6>3.0.CO;2-7

[62]   Grau, A.M., Wen, W., Ramroopsingh, D.S., Gao, Y.T., Zi, J., Cai, Q., Shu, X.O. and Zheng, W. (2008) Circulating transforming growth factor-beta-1 and breast cancer prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Research and Treatment, 112, 335-341.
http://dx.http://dx.doi.org/10.1007/s10549-007-9845-8

[63]   Ivanovic, V., Todorovic-Rakovic, N., Demajo, M., Neskovic-Konstantinovic, Z., Subota, V., Ivanisevic-Milovanovic, O. and Nikolic-Vukosavljevic, D. (2003) Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. European Journal of Cancer, 39, 454-461.
http://dx.http://dx.doi.org/10.1016/S0959-8049(02)00502-6

[64]   Kong, F.M., Anscher, M.S., Murase, T., Abbott, B.D., Iglehart, J.D. and Jirtle, R.L. (1995) Elevated plasma transforming growth factor-beta 1 levels in breast cancer patients decrease after surgical removal of the tumor. Annals of Surgery, 222, 155-162.
http://dx.http://dx.doi.org/10.1097/00000658-199508000-00007

[65]   Sheen-Chen, S.M., Chen, H.S., Sheen, C.W., Eng, H.L. and Chen, W.J. (2001) Serum levels of transforming growth factor beta1 in patients with breast cancer. Archives of Surgery, 136, 937-940.
http://dx.http://dx.doi.org/10.1001/archsurg.136.8.937

[66]   Baselga, J., Rothenberg, M.L., Tabernero, J., Seoane, J., Daly, T., Cleverly, A., Berry, B., Rhoades, S.K., Ray, C.A., Fill, J., Farrington, D.L., Wallace, L. A., Yingling, J.M., Lahn, M., Arteaga, C. and Carducci, M. (2008) TGF-beta signalling-related markers in cancer patients with bone metastasis. Biomarkers, 13, 217-236.
http://dx.http://dx.doi.org/10.1080/13547500701676019

[67]   Divella, R., Daniele, A., Savino, E., Palma, F., Bellizzi, A., Giotta, F., Simone, G., Lioce, M., Quaranta, M., Paradiso, A. and Mazzocca, A. (2013) Circulating levels of transforming growth factor-βeta (TGF-β) and chemokine (C-X-C motif) ligand-1 (CXCL1) as predictors of distant seeding of circulating tumor cells in patients with metastatic breast cancer. Anticancer Research, 33, 1491-1497.

[68]   Buck, M.B., Fritz, P., Dippon, J., Zugmaie, R.G. and Knabbe, C. (2004) Prognostic significance of transforming growth factor beta receptor II in estrogen receptornegative breast cancer patients. Clinical Cancer Research, 10, 491-498.
http://dx.http://dx.doi.org/10.1158/1078-0432.CCR-0320-03

[69]   Richardsen, E., Uglehus, R.D., Johnsen, S.H. and Busund, L.T. (2012) Immunohistochemical expression of epithetlial and stromal immunomodulatory signalling molecules is a prognostic indicator in breast cancer. BMC Research Notes, 21, 110.
http://dx.http://dx.doi.org/10.1186/1756-0500-5-110

[70]   de Kruijf, E.M., Dekker, T.J., Hawinkels, L.J., Putter, H., Smit, V.T., Kroep, J.R., Kuppen, P.J., van de Velde, C.J., ten Dijke, P., Tollenaar, R.A. and Mesker, W.E. (2013) The prognostic role of TGF-β signaling pathway in breast cancer patients. Ann Oncol, 24, 384-390.
http://dx.http://dx.doi.org/10.1093/annonc/mds333

[71]   Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. and Clarke, M.F. (2003) Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983-3988.
http://dx.http://dx.doi.org/10.1073/pnas.0530291100

[72]   Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J. and Maitland, N.J. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946-10951.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-05-2018

[73]   O’Brien, C.A., Pollett, A., Gallinger, S. and Dick, J.E. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106-110. http://dx.http://dx.doi.org/10.1038/nature05372

[74]   Reya, T., Morrison, S.J., Clarke, M.F. and Weissman, I.L. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414, 105-111.
http://dx.http://dx.doi.org/10.1038/35102167

[75]   Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111-115.
http://dx.http://dx.doi.org/10.1038/nature05384

[76]   Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M. and Cusimano, M.D., Dirks, P.B. (2004) Identification of human brain tumour initiating cells. Nature, 432, 396-401.
http://dx.http://dx.doi.org/10.1038/nature03128

[77]   Hoogen, C., Horst, G., Cheung, H., Buijs, J.T., Lippitt, J.M., Guzman-Ramirez, N., Hamdy, F.C., Eaton, C.L., Thalmann, G.N., Cecchini, M.G., Pelger, R.C. and Pluijm, G. (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Research, 70, 5163-5173.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-09-3806

[78]   Clevers, H. (2011) The cancer stem cell: Premises, promises and challenges. Nature Medicine, 17, 313-319.
http://dx.http://dx.doi.org/10.1038/nm.2304

[79]   Shipitsin, M., Campbell, L.L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, J., Nikolskaya, T., Serebryiskaya, T., Beroukhim, R., Hu, M., Halushka, M.K., Sukumar, S., Parker, L.M., Anderson, K.S., Harris, L.N., Garber, J.E., Richardson, A.L., Schnitt, S.J., Nikolsky, Y., Gelman, R.S. and Polyak, K. (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell, 11(3), 259-273. http://dx.http://dx.doi.org/10.1016/j.ccr.2007.01.013

[80]   Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhan,g C.C., Shipitsin, M., Campbell, L.L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R.A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704-715.
http://dx.http://dx.doi.org/10.1016/j.cell.2008.03.027

[81]   Scheel, C., Eaton, E.N., Li, S.H.-J., Chaffer, C.L., Reinhardt, F., Kah, K.-J., Bell, G., Guo, W., Rubin, J., Richardson, A.L., and Weinberg, R.A. (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell, 10, 926-940.
http://dx.http://dx.doi.org/10.1016/j.cell.2011.04.029

[82]   Balko, J.M., Schwarz, L.J., Bhola, N.E., Kurupi, R., Owens, P., Miller, T.W., Gomez, H., Cook, R.S. and Arteaga, C.L. (2013) Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer. Cancer Research.

[83]   Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C.R., Lacey, D.L., Mak, T.W., Boyle, W.J. and Penninger, J. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397, 315-323.
http://dx.http://dx.doi.org/10.1038/16852

[84]   Kong, Y.Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J., Elliott, R., McCabe, S., Wong, T., Campagnuolo, G., Moran, E., Bogoch, E.R., Van, G., Nguyen, L.T., Ohashi, P.S., Lacey, D.L., Fish, E., Boyle. W.J and Penninger, J.M. (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 402, 304-309. http://dx.http://dx.doi.org/10.1038/46303

[85]   Franz-Odendaal, T.A., Hall, B.K. and Witten, P.E. (2006) Buried alive: How osteoblasts become osteocytes. Dev Dyn, 235, 176-190.
http://dx.http://dx.doi.org/10.1002/dvdy.20603

[86]   Knothe, Tate, M.L., Adamson, J.R., Tami, A.E. and Bauer, T.W. (2004) The osteocyte. The International Journal of Biochemistry & Cell Biology, 36, 1-8.
http://dx.http://dx.doi.org/10.1016/S1357-2725(03)00241-3

[87]   Iqbal, J. and Zaidi, M. (2005) Molecular regulation of mechanotransduction. Biochemical and Biophysical Research Communications, 328, 751-755.
http://dx.http://dx.doi.org/10.1016/j.bbrc.2004.12.087

[88]   Robling, A.G., Niziolek, P.J., Baldridge, L.A., Condon, K.W., Allen, M.R., Alam, I., Mantila, SM., GluhakHeinrich, J., Bellido, T.M., Harris, S.E. and Turner, C.H. (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. The Journal of Biological Chemistry, 283, 5866-5875.
http://dx.http://dx.doi.org/10.1074/jbc.M705092200

[89]   Hadjidakis, D.J. and Androulakis, I.I. (2006) Bone remodeling. Annals of the New York Academy of Sciences, 1092, 385-396.
http://dx.http://dx.doi.org/10.1196/annals.1365.035

[90]   Seyedin, S.M., Thomas, T.C., Thompson, A.Y., Rosen, D.M. and Piez, K.A. (1985) Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proceedings of the National Academy of Sciences of the United States of America, 82, 2267-2227. http://dx.http://dx.doi.org/10.1073/pnas.82.8.2267

[91]   Balooch, G., Balooch, M., Nalla, R.K., Schilling, S., Filvaroff, E.H., Marshall, G.W., Marshall, S.J., Ritchie, R.O., Derynck, R. and Alliston, T. (2005) TGF-beta regulates the mechanical properties and composition of bone matrix. Proceedings of the National Academy of Sciences of the United States of America, 102, 18813-18818. http://dx.http://dx.doi.org/10.1073/pnas.0507417102

[92]   Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., Shi, Z., Zhao, L., Nagy, T.R., Peng, X., Hu, J., Feng, X., Hul, W., Wan, M. and Cao, X. (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 15, 757-765.
http://dx.http://dx.doi.org/10.1038/nm.1979

[93]   Alliston, T., Choy, L., Ducy, P., Karsenty, G. and Derynck, R. (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. The EMBO Journal, 20, 2254-2272.
http://dx.http://dx.doi.org/10.1093/emboj/20.9.2254

[94]   Janssens, K., Dijke, P., Janssens, S. and Hul, W. (2005) Transforming growth factor-beta1 to the bone. Endocrine Reviews, 26, 743-774.
http://dx.http://dx.doi.org/10.1210/er.2004-0001

[95]   Iqbal, J., Sun, L. and Zaidi, M. (2009) Coupling bone degradation to formation. Nature Medicine, 15(7), 729-731. http://dx.http://dx.doi.org/10.1038/nm0709-729

[96]   Canalis, E. (2009) Growth factor control of bone mass. Journal of Cellular Biochemistry, 108, 769-777.
http://dx.http://dx.doi.org/10.1002/jcb.22322

[97]   Maeda, S., Hayashi, M., Komiya, S., Imamura, T. and Miyazono, K. (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. The EMBO Journal, 23, 552-563.
http://dx.http://dx.doi.org/10.1038/sj.emboj.7600067

[98]   Thirunavukkarasu, K., Miles, R.R., Halladay, D.L., Yang, X., Galvin, R.J., Chandrasekhar, S., Martin, T.J. and Onyia, J.E. (2001) Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects. The Journal of Biological Chemistry, 276, 36241-36250.
http://dx.http://dx.doi.org/10.1074/jbc.M104319200

[99]   Guo, L.J., Xie, H., Zhou, H.D., Luo, X.H., Peng, Y.Q. and Liao, E.Y. (2004) Stimulation of RANKL and inhibition of membrane-type matrix metalloproteinase-1 expression by parathyroid hormone in normal human osteoblasts. Endocrine Research, 30, 369-377.
http://dx.http://dx.doi.org/10.1081/ERC-200033719

[100]   Oursler, M,J. (1994) Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. Journal of Bone and Mineral Research, 9, 443-452.
http://dx.http://dx.doi.org/10.1002/jbmr.5650090402

[101]   Rhodes, S.D., Wu, X., He, Y., Chen, S., Yang, H., Staser, K.W., Wang, J., Zhang, P., Jiang, C., Yokota, H., Dong, R., Peng, X., Yang, X., Murthy, S., Azhar, M., Mohammad, K.S., Xu, M., Guise, T.A. and Yang, F.C. (2013) Hyperactive transforming growth factor-β1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. Journal of Bone and Mineral Research.
http://dx.http://dx.doi.org/10.1002/jbmr.1992

[102]   Nistala, H., Lee-Arteaga, S., Smaldone, S., Siciliano, G. and Ramirez F. (2010) Extracellular microfibrils control osteoblast-supported osteoclastogenesis by restricting TGF{beta} stimulation of RANKLproduction. The Journal of biological chemistry, 285, 34126-34133.
http://dx.http://dx.doi.org/10.1074/jbc.M110.125328

[103]   Nguyen, J., Tang, S.Y., Nguyen, D. and Alliston T. (2013) Load regulates bone formation and Sclerostin expression through a TGFβ-dependent mechanism. PLoS ONE, 8, e53813.
http://dx.http://dx.doi.org/10.1371/journal.pone.0053813

[104]   Bednarz-Knoll, N., Alix-Panabières, C. and Pantel, K. (2011) Clinical relevance and biology of circulating tumor cells. Breast Cancer Research, 13, 228.
http://dx.http://dx.doi.org/10.1186/bcr2940

[105]   Kang, Y., He, W., Tulley, S., Gupta, G.P., Serganova, I., Chen, C.R., Manova-Todorova, K., Blasberg, R., Gerald, W.L. and Massagué, J. (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proceedings of the National Academy of Sciences of the United States of America, 102, 13909-13914.
http://dx.http://dx.doi.org/10.1073/pnas.0506517102

[106]   Javelaud, D., Mohammad, K.S., McKenna, C.R,, Fournier, P., Luciani, F., Niewolna, M., André, J., Delmas, V., Larue, L., Guise, T.A. and Mauviel, A. (2007) Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Research, 67, 2317-2324.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-06-3950

[107]   Guise, T.A., Yin, J.J., Taylor, D., Kumagai, Y., Dallas, M., Boyce, B.F., Yoneda, T. and Mundy, G.R. (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. Journal of Clinical Investigation, 98, 1544-1549. http://dx.http://dx.doi.org/10.1172/JCI118947

[108]   Mundy, G.R. and Edwards, J.R. (2008) PTH-related peptide (PTHrP) in hypercalcemia. J Am Soc Nephrol, 19, 672-675.
http://dx.http://dx.doi.org/10.1681/ASN.2007090981

[109]   Kohno, N., Kitazawa, S., Sakoda, Y., Kanbara, Y., Furuya, Y., Ohashi, O. and Kitazawa, R. (1994) Parathyroid hormone-related protein in breast cancer tissues: Relationship between primary and metastatic sites. Breast cancer, 1, 43-49.
http://dx.http://dx.doi.org/10.1007/BF02967374

[110]   Henderson, M., Danks, J., Moseley, J., Slavin, J., Harris, T., McKinlay, M., Hopper, J. and Martin, T. (2001) Parathyroid hormone-related protein production by breast cancers, improved survival, and reduced bone metastases. Journal of the National Cancer Institute, 93, 234-237. http://dx.http://dx.doi.org/10.1093/jnci/93.3.234

[111]   Henderson, M.A., Danks, J.A., Slavin, J.L., Byrnes, G.B., Choong, P.F., Spillane, J.B., Hopper, J.L. and Martin, T.J. (2006) Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Research, 66, 2250-2256.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-05-2814

[112]   Kakonen, S.M., Selander, K.S., Chirgwin, J.M., Yin, J.J., Burns, S., Rankin, W.A., Grubbs, B.G., Dallas, M., Cui, Y. and Guise TA. (2002)Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. The Journal of Biological Chemistry, 277, 24571-24578.
http://dx.http://dx.doi.org/10.1074/jbc.M202561200

[113]   Thomas, R.J., Guise, T.A., Yin, J.J., Elliott, J., Horwood, N.J., Martin, T.J. and Gillespie, M.T. (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology, 140, 4451-4458.
http://dx.http://dx.doi.org/10.1210/en.140.10.4451

[114]   Brown, J.M. and Wilson, W.R. (2004) Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer, 4, 437-447. http://dx.http://dx.doi.org/10.1038/nrc1367

[115]   Comerford, K.M., Wallace, T.J., Karhausen, J., Louis, N.A., Montalto, M.C. and Colgan S.P. (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 15, 62, 3387-3394.

[116]   Wartenberg, M., Ling, F.C., Müschen, M., Klein, F., Acker, H., Gassmann, M., Petrat, K., Pütz, V., Hescheler, J. and Sauer, H. (2003) Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. The FASEB Journal, 17, 503-505.

[117]   Jubb, A.M., Buffa, F.M. and Harris, A.L. (2010) Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. Journal of Cellular and Molecular Medicine, 14, 18-29.
http://dx.http://dx.doi.org/10.1111/j.1582-4934.2009.00944.x

[118]   Hiraga, T., Kizaka-Kondoh, S., Hirota, K., Hiraoka, M. and Yoneda, T. (2007) Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Research, 67, 4157-4163.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-06-2355

[119]   McMahon, S., Charbonneau, M., Grandmont, S., Richard, D.E. and Dubois, C.M. (2006) Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. The Journal of Biological Chemistry, 281, 24171-24181.
http://dx.http://dx.doi.org/10.1074/jbc.M604507200

[120]   Dunn, L.K., Mohammad, K.S., Fournier, P.G, McKenna, C.R., Davis, H.W., Niewolna, M., Peng, X.H., Chirgwin, J.M. and Guise, T.A. (2009) Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS ONE, 4, e6896.
http://dx.http://dx.doi.org/10.1371/journal.pone.0006896

[121]   Muraoka, R.S., Dumont, N., Ritter, C.A., Dugger, T.C., Brantley, D.M., Chen, J., Easterly, E., Roebuck, L.R., Ryan, S., Gotwals, P.J., Koteliansky, V. and Arteaga, C.L. (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. Journal of Clinical Investigation, 109, 1551-1559.

[122]   Muraoka-Cook, R.S., Kurokawa, H., Koh, Y., Forbes, J.T., Roebuck, L.R., Barcellos-Hoff, M.H., Moody, S.E., Chodosh, L.A. and Arteaga, C.L. (2004) Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Research, 64, 9002-9011.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-04-2111

[123]   Arteaga, C.L., Carty-Dugger, T., Moses, H.L., Hurd, S.D. and Pietenpol, J.A. (1993) Transforming growth factor beta 1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth & Differentiation, 4, 193-201.

[124]   Arteaga, C.L., Hurd, S.D., Winnie,r A.R., Johnson, M.D., Fendly, B.M. and Forbes, J.T. (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. Journal of Clinical Investigation, 92, 2569-2576. http://dx.http://dx.doi.org/10.1172/JCI116871

[125]   Nam, J.S., Suchar, A.M., Kang, M.J., Stuelten, C.H., Tang, B., Michalowska, A.M., Fisher, L.W., Fedarko, N.S,, Jain. A., Pinkas, J., Lonning, S. and Wakefield, L.M. (2006) Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Research, 66, 6327-6335. http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-06-0068

[126]   Nam, J.S., Terabe, M., Kang, M.J., Chae, H., Voong, N., Yang, Y.A., Laurence, A., Michalowska, A., Mamura, M., Lonning, S., Berzofsky, J.A. and Wakefield, L.M. (2008) Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Research, 68, 3915-3923.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-08-0206

[127]   Nam, J.S., Terabe, M., Mamura, M., Kang, M.J., Chae, H., Stuelten, C., Kohn, E., Tang, B., Sabzevari, H., Anver, M.R., Lawrence, S., Danielpour, D., Lonning, S., Berzofsky, J.A. and Wakefield, L.M. (2008) An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Research, 68, 3835-3843.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-08-0215

[128]   Biswas, S., Nyman, J.S., Alvarez, J., Chakrabarti, A., Ayres, A., Sterling, J., Edwards, J., Rana, T., Johnson, R., Perrien, D.S., Lonning, S., Shyr, Y., Matrisian, L.M. and Mundy, G.R. (2011) Anti-Transforming Growth Factor ß Antibody Treatment Rescues Bone Loss and Prevents Breast Cancer Metastasis to Bone. PloS ONE, 6, e27090.
http://dx.http://dx.doi.org/10.1371/journal.pone.0027090

[129]   Bandyopadhyay, A., Zhu, Y., Cibull, M.L., Bao, L., Chen, C. and Sun, L. (1999) A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Research, 59, 5041-5046.

[130]   Bandyopadhyay, A., Lopez-Casillas. F., Malik, S.N., Montiel, J.L., Mendoza, V., Yang, J. and Sun, L.Z. (2002) Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Research, 62, 4690-4695.

[131]   Bennett, C.F. and Swayze, E.E. (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annual Review of Pharmacology and Toxicology, 50, 259-293.
http://dx.http://dx.doi.org/10.1146/annurev.pharmtox.010909.105654

[132]   Crooke, S.T. (2004) Progress in antisense technology. Annual Review of Medicine, 55, 61-95.
http://dx.http://dx.doi.org/10.1146/annurev.med.55.091902.104408

[133]   Inman, G.J., Nicolas, F.J., Callahan, J.F., Harling, J.D., Gaster, L.M., Reith, A.D., Laping, N.J. and Hill, C.S. (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 62, 65-74.
http://dx.http://dx.doi.org/10.1124/mol.62.1.65

[134]   Petersen, M., Thorikay, M., Deckers, M., Dinther, M., Grygielko, E.T., Gellibert, F., Gouville, A.C., Huet, S., Dijke, P. and Laping, N.J. (2008) Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney International, 73, 705-715.
http://dx.http://dx.doi.org/10.1038/sj.ki.5002717

[135]   Tojo, M., Hamashima, Y., Hanyu, A., Kajimoto, T., Saitoh, M., Miyazono, K., Node, M. and Imamura, T. (2005) The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Science, 96, 791-800.
http://dx.http://dx.doi.org/10.1111/j.1349-7006.2005.00103.x

[136]   Byfield, S.D. and Roberts, A.B. (2004) Lateral signaling enhances TGF-beta response complexity. Trends in Cell Biology, 14, 107-111.
http://dx.http://dx.doi.org/10.1016/j.tcb.2004.01.001

[137]   Fu, K., Corbley, M.J., Sun, L., Friedman, J.E., Shan, F., Papadatos, J.L., Costa, D., Lutterodt, F., Sweigard, H., Bowes, S., Choi, M., Boriack-Sjodin, P.A., Arduini, R.M., Sun, D., Newman, M.N., Zhang, X., Mead, J.N., Chuaqui, C.E., Cheung, H.K., Cornebise, M., Carter, M.B., Josiah, S., Singh, J., Lee, W.C., Gill, A. and Ling, L.E. (2008) SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 665-671.
http://dx.http://dx.doi.org/10.1161/ATVBAHA.107.158030

[138]   Ehata, S., Hanyu, A., Fujime, M., Katsuno, Y,, Fukunaga, E., Goto, K., Ishikawa, Y., Nomura, K., Yokoo, H., Shimizu, T., Ogata, E., Miyazono, K., Shimizu, K. and Imamura, T. (2007) Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Science, 98, 127-133.
http://dx.http://dx.doi.org/10.1111/j.1349-7006.2006.00357.x

[139]   Mohammad, K.S., Chen, C.G., Balooch, G., Stebbins, E., McKenna, C.R., Davis, H., Niewolna, M., Peng, X.H., Nguyen, D.H., Ionova-Martin, S.S., Bracey, J.W., Hogue, W.R., Wong, D.H., Ritchie, R.O., Suva, L.J., Derynck, R., Guise, T.A. and Alliston T. (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS ONE, 4, e5275.
http://dx.http://dx.doi.org/10.1371/journal.pone.0005275

[140]   Institute AAMCTCNC. (2009) Topical halofuginone hydrobromide in treating patients with HIV-related Kaposi’s sarcoma. National Cancer Institute.
http://clinicaltrials.gov/ct2/show/NCT00064142,

[141]   Juárez, P., Mohammad, K.S., Yin, J.J., Fournier, P.G., McKenna, R.C., Davis, H.W., Peng, X.H., Niewolna, M., Javelaud, D., Chirgwin, J.M., Mauviel, A. and Guise. T.A. (2012) Halofuginone inhibits the establishment and progression of melanoma bone metastases. Cancer Research, 1, 6247-6256.
http://dx.http://dx.doi.org/10.1158/0008-5472.CAN-12-1444

[142]   Gadir, N., Jackson, D.N., Lee, E. and Foster, D.A. (2008) Defective TGF-beta signaling sensitizes human cancer cells to rapamycin. Oncogene, 27, 1055-1062.
http://dx.http://dx.doi.org/10.1038/sj.onc.1210721

[143]   Filyak, Y., Filyak, O. and Stoika, R. (2007) Transforming growth factor beta-1 enhances cytotoxic effect of doxorubicin in human lung adenocarcinoma cells of A549 line. Cell Biology International, 31, 851-855.
http://dx.http://dx.doi.org/10.1016/j.cellbi.2007.02.008

[144]   Taniguchi, Y., Kawano, K., Minowa, T., Sugino, T., Shimojo, Y. and Maitani, Y. (2010) Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGFbeta type I receptor inhibitor. Cancer Science, 101, 2207-2213. http://dx.http://dx.doi.org/10.1111/j.1349-7006.2010.01646.x

[145]   Mohammad, K.S., Stebbins, E.G., Kingsley, L., Fournier, P.G.J., Niewolna, M., McKenna, C.R., Peng, X., Higgins, L., Wong, D. and Guise, T.A. (2008) Combined transforming growth factor b receptor I kinase inhibitor and biphosphonates are additve to reduce breast cancer bone metastases. Journal of Bone and Mineral Research, 23, F275.

[146]   Hengst, V., Oussoren, C., Kissel, T. and Storm, G. (2007) Bone targeting potential of bisphosphonate-targeted liposomes. Preparation, characterization and hydroxyapatite binding in vitro. International Journal of Pharmaceutics, 331, 224-227.
http://dx.http://dx.doi.org/10.1016/j.ijpharm.2006.11.024%%

 
 
Top