Optimal Investment and Proportional Reinsurance with Risk Constraint

Show more

References

[1] S. Browne, “Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin,” Mathematics of Operations Research, Vol. 20, No. 4 1995, pp. 937-958.

http://dx.doi.org/10.1287/moor.20.4.937

[2] R. Kostadinova, “Optimal Investment for Insurers When the Stock Price Follows Anexponential Levy Process,” Insurance: Mathematics and Economics, Vol. 41, No. 2, 2007, pp. 250-263.

http://dx.doi.org/10.1016/j.insmatheco.2006.10.018

[3] J. Ma and X. Sun, “Ruin Probabilities for Insurance Models Involving Investments,” Scandinavian Actuarial Journal, Vol. 2003, No. 3, 2003, pp. 217-237.

http://dx.doi.org/10.1080/03461230110106381

[4] D. S. Promislow and V. R. Young, “Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift,” North American Actuarial Journal, Vol. 9, No. 3, 2005, pp. 109-128.

[5] D. S. Promislow and V. R. Young, “Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift,” North American Actuarial Journal, Vol. 9, No. 3, 2005, pp. 109-128.

[6] H. Schmidli, “Optimal Proportional Reinsurance Policies in a Dynamic Setting,” Scandinavian Actuarial Journal, Vol. 2001, No. 1, 2001, pp. 55-68.

http://dx.doi.org/10.1080/034612301750077338

[7] H. Schmidli, “On Minimizing the Ruin Probability by Investment and Reinsurance,” The Annals of Applied Probability, Vol. 12, No. 3, 2002, pp. 890-907.

http://dx.doi.org/10.1214/aoap/1031863173

[8] M. Taksar and C. Markussen, “Optimal Dynamic Reinsurance Policies for Larg Insurance Portfolios,” Finance and Stochastics, Vol. 7, No. 1, 2003, pp. 97-121.

http://dx.doi.org/10.1007/s007800200073

[9] H. L. Yang and L. H. Zhang, “optimal Investment for Insurer with Jump Diffusion Risk Process,” Insurance: Mathematics and Economics, Vol. 37, No. 3, 2005, pp. 615-634. http://dx.doi.org/10.1016/j.insmatheco.2005.06.009

[10] J. Z. Liu, L. Bai and K. F. C. Yiu, “Optimal Investment with a Value-at-Risk Constraint,” Journal of Industrial and Management Optimization, Vol. 8, No. 3, 2012, pp. 531-547. http://dx.doi.org/10.3934/jimo.2012.8.531

[11] J. Z. Liu and K. F. C. Yiu, “Optimal Stochastic Differential Games with Var Constraints,” Discrete and Continuous Dynamical Systems-Series B, Vol. 18, No. 7, 2013, pp. 1889-1907. http://dx.doi.org/10.3934/dcdsb.2013.18.1889

[12] J. Z. Liu, K. F. C. Yiu and T. K. Siu, “Optimal Investment-Reinsurance with Dynamic Risk Constraint and Regime Switching,” Scandinavian Actuarial Journal, Vol. 2013, No. 4, 2013, pp. 263-285.

http://dx.doi.org/10.1080/03461238.2011.602477

[13] J. Z. Liu, K. F. C. Yiu and K. L. Teo, “Optimal Portfolios with Stress Analysis and the in a Effect of a CVaR Constraint,” Pacific Journal of Optimization, Vol. 7, No. 1, 2010, pp. 83-95.

[14] K. F. C. Yiu, “Optimal Portfolio under a Value-at-Risk Constraint,” Journal of Economic Dynamics and Control, Vol. 28, No. 7, 2004, pp. 1317-1334.

http://dx.doi.org/10.1016/S0165-1889(03)00116-7

[15] L. Bai and J. Guo, “Optimal Proportional Reinsurance and Investment with Multiple Risky Assets and NoShorting Constrain,” Insurance: Mathematics and Economics, Vol. 42, No. 3, 2008, pp. 968-975.

http://dx.doi.org/10.1016/j.insmatheco.2007.11.002

[16] B. Hujgaard and M. Taksar, “Optimal Proportional Reinsurance Policies for Diffusion Models,” Scandinavian Actuarial Journal, Vol. 1998, No. 2, 1998, pp. 166-180.

http://dx.doi.org/10.1080/03461238.1998.10414000

[17] H. Gerber, “An Introduction to Mathematical Risk Theory,” Richard D Irwin, Bloomsbury, 1979.

[18] R. C. Loxton, K. L. Teo and V. Rehbock, “Optimal Control Problems with Multiple Characteristic Time Points in the Objective and Constraints,” Automatica, Vol. 44, No. 11, 2008, pp. 2923-2929.

http://dx.doi.org/10.1016/j.automatica.2008.04.011

[19] R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, “Optimal Control Problems with Continuous Constraints on the State and the Control,” Automatica, Vol. 45, No. 10, 2009, pp. 2250-2257.

http://dx.doi.org/10.1016/j.automatica.2009.05.029

[20] K. L. Teo, “Control Parametrization Enhancing Transform to Optimal Control Problems Nonlinear Analysis,” Vol. 63, No. 5-7, 2005, pp. 2223-2236.

http://dx.doi.org/10.1016/j.na.2005.03.066

[21] J. W. Pratt, “Risk Aversion in the Small and in the Large,” Econometrica, Vol. 32, No. 1/2, 1964, pp. 122-136.

http://dx.doi.org/10.2307/1913738

[22] K. L. Teo, J. Goh, and K. H. Wong, “A Unified Computational Approach to Optimal Control Problems,” Longman Scientific and Technical, Harlow, 1991.

[23] Ekeland and R. Temam, “Convex Analysis and Variational Problems,” Society for Industrial and Applied Mathematics, Philadelphia, 1976.