AJMB  Vol.3 No.4 , October 2013
Identification and preliminary characterization of novel B3-type metallo-β-lactamases
Antibiotic resistance has emerged as a major global threat to human health. Among the strategies employed by pathogens to acquire resistance the use of metallo-β-lactamases (MBLs), a family of dinuclear metalloenzymes, is among the most potent. MBLs are subdivided into three groups (i.e. B1, B2 and B3) with most of the virulence factors belonging to the B1 group. The recent discovery of AIM-1, a B3-type MBL, however, has illustrated the potential health threat of this group of MBLs. Here, we employed a bioinformatics approach to identify and characterize novel B3-type MBLs from Novosphingobium pentaromativorans and Simiduia agarivorans. These enzymes may not yet pose a direct risk to human health, but their structures and function may provide important insight into the design and synthesis of a still elusive universal MBL inhibitor.

Cite this paper
Miraula, M. , Brunton, C. , Schenk, G. and Mitić, N. (2013) Identification and preliminary characterization of novel B3-type metallo-β-lactamases. American Journal of Molecular Biology, 3, 198-203. doi: 10.4236/ajmb.2013.34026.
[1]   Fisher, J.F., Meroueh, S.O. and Mobashery, S. (2005) Bacterial resistance to beta-lactam antibiotics: Compelling opportunism, compelling opportunity. Chemical Reviews, 105, 395-424.

[2]   Walsh, T.R., Toleman, M.A., Poirel, L. and Nordmann, P. (2005) Metallo-beta-lactamases: The quiet before the storm? Clinical Microbiology Reviews, 182, 306-325.

[3]   Cornaglia, G., Giamarellou, H. and Rossolini, G.M. (2011) Metallo-beta-lactamases: A last frontier for betalactams? The Lancet Infectious Diseases, 115, 381-393.

[4]   Bebrone, C. (2007) Metallo-beta-lactamases classification, activity, genetic organization, structure, zinc coordination and their superfamily. Biochemical Pharmacology, 7412, 1686-1701.

[5]   Crowder, M.W., Spencer, J. and Vila, A.J. (2006) Metallo-beta-lactamases: Novel weaponry for antibiotic resistance in bacteria. Accounts of Chemical Research, 3910, 721-728.

[6]   Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frere, J. and Dideberg, O. (1995) The 3-D Structure of a Zinc Metallo-Beta-Lactamase from Bacillus-Cereus Reveals a New-Type of Protein Fold. The EMBO Journal, 1420, 4914-4921.

[7]   Crowder, M.W., Wang, Z.G., Franklin, S.L., Zovinka, E. P. and Benkovic, S.J. (1996) Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. Biochemistry, 3537, 12126-12132.

[8]   Laraki, N., Franceschini, N., Rossolini, G.M., Santucci, P., Meunier, C., de Pauw, E., Amicosante, G., Frere, J.M. and Galleni, M. (1999) Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrob Agents Chemother, 434, 902-906.

[9]   Murphy, T.A., Catto, L.E., Halford, S.E., Hadfield, A.T., Minor, W., Walsh, T.R. and Specer, J. (2006) Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases. Journal of Molecular Biology, 3573, 890-903.

[10]   Thomas, P.W., Zheng, M., Wu, S.S., Guo, H., Liu, D.L., Xu, D.G. and Fast, W. (2011) Characterization of Purified New Delhi Metallo-beta-lactamase-1. Biochemistry, 5046, 10102-10113. http://dx.doi.org/10.1021/bi201449r

[11]   Valladares, M.H., Kiefer, M., Heinz, U., Soto, R.P., Meyer-Klaucke, W., Nolting, H.F., Zeppezauer, M., Galleni, M., Frere, J.M., Rossolini, G.M., Amicosante, G. and Adolph, H.W. (2000) Kinetic and spectroscopic characterization of native and metal-substituted beta-lactamase from Aeromonas hydrophila AE036. FEBS Letters, 4773, 285-290.

[12]   Villadares, M.H., Galleni, M., Frere, J.M., Felici, A., Perilli, M., Franceschini, N., Rossolini, G.M., Oratore, A., Amicosante, G. (1996) Overproduction and purification of the Aeromonas hydrophila CphA metallo-beta-lactamase expressed in Escherichia coli. Microbial Drug Resistance-Mechanisms Epidemiology and Disease, 22, 253-256. http://dx.doi.org/10.1089/mdr.1996.2.253

[13]   Crawford, P.A., Sharma, N., Chandrasecar, S., Sigdel, T., Walsh, T.R., Spencer, J. and Crowder, M.W. (2004) Over-expression, purification, and characterization of metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Protein Expression and Purification, 362, 272-279. http://dx.doi.org/10.1016/j.pep.2004.04.017

[14]   Saavedra, M.J., Peixe, L., Sousa, J.C., Henriques, I., Alves, A., Correia, A. (2003) Sfh-1, a subclass B2 metallo-beta-lactamase from a Serratia fonticola environmental isolate. Antimicrobial Agents and Chemotherapy, 477, 2330-2333.

[15]   Crowder, M.W., Walsh, T.R., Banovic, L., Pettit, M., and Spencer, J. (1998) Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 424, 921-926.

[16]   Mercuri, P.S., Bouillenne, F., Boschi, L., Lamote-Brasseur, J., Amicosante, G., Devreese, B., Van Beeumen, J., Free, J.M., Rossolini, G.M. and Galleni, M. (2001) Biochemical characterization of the FEZ-1 metallo-alpha-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli. Antimicrobial Agents and Chemotherapy, 454, 1254-1262.

[17]   Bellais, S., Poirel, L., Fortineau, N., Decousser, J.W. and Nordmann, P. (2001) Biochemical-genetic characterization of the chromosomally encoded extended-spectrum class a beta-lactamase from Rahnella aquatilis. Antimicrobial Agents and Chemotherapy, 4510, 2965-2968.

[18]   Wachino, J., Yamaguchi, Y., Mori, S., Kurosaki, H., Arakawa, Y. and Shibayama, K. (2013) Structural insights into the subclass B3 metallo-beta-lactamase SMB-1 and the mode of inhibition by the common metallobeta-lactamase inhibitor mercaptoacetate. Antimicrobial Agents and Chemotherapy, 571, 101-109.

[19]   Leiros, H.K., Borra, P.S., Brandsdal, B.O., Edvardsen, K.S.W., Spencer, J., Walsh, T.R. and Samuelsen, O. (2012) Crystal structure of the mobile metallo-beta-lactamase AIM-1 from Pseudomonas aeruginosa: Insights into antibiotic binding and the role of Gln157. Antimicrobial Agents and Chemotherapy, 568, 4341-4353.

[20]   Galleni, M., Lamotte-Basseur, J., Rossolini, G.M., Spencer, J., Dideberg, O. and Frere, J.M. (2001) Standard numbering scheme for class B beta-lactamases. Antimicrobial Agents and Chemotherapy, 453, 660-66 3.

[21]   Jacoby, G.A. (2006) Beta-lactamase nomenclature. Antimicrobial Agents and Chemotherapy, 504, 1123-1139.

[22]   Sohn, J.H., Kwon, K.K., Kang, J.H., Jun, H.B., Kim, S.J. (2004) Novosphingobium pentaromativorans sp nov., a high-molecular-mass polycyclic aromatic hydrocarbondegrading bacterium isolated from estuarine sediment. International Journal of Systematic and Evolutionary Microbiology, 54 1483-1487.

[23]   Shieh, W.Y., Liu, T.Y., Lin, S.Y., Jean, W.D. and Chen, J.S. (2008) Simiduia agarivorans gen. nov., sp nov., a marine, agarolytic bacterium isolated from shallow coastal water from Keelung, Taiwan. International Journal of Systematic and Evolutionary Microbiology, 58, 895-900.

[24]   Garrity, J.D., Pauff, J.M. and Crowder, M.W. (2004) Probing the dynamics of a mobile loop above the active site of L1, a metallo-beta-lactamase from Stenotrophomonas maltophilia, via site-directed mutagenesis and stopped-flow fluorescence spectroscopy. The Journal of Biological Chemistry, 279, 39663-39670.

[25]   Yang, K.W. and Crowder, M.W. (1999) Inhibition studies on the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Archives of Biochemistry and Biophysics, 3681, 1-6.

[26]   Vella, P., Hussein, W.M., Leung, E.W.W., Clayton, D., Ollis, D.L., Mitic, N., Schenk, G. and McGeary, R.P. (2011) The identification of new metallo-beta-lactamase inhibitor leads from fragment-based screening. Bioorganic & Medicinal Chemistry Letters, 2111, 3282-3285.