Optimum Setting Strategy for WTGS by Using an Adaptive Neuro-Fuzzy Inference System

Show more

References

[1] “Technology Roadmap: Wind Energy,” International Energy Agency, 2009. http://www.iea.org/publications/freepublications/publication/Wind_Roadmap.pdf

[2] “World Energy Outlook 2012,” International Energy Agency, 2012. http://www.iea.org/publications/freepublications/publication/English.pdf

[3] S. Bhowmik, R. Spee, and J. H. R. Enslin, “Performance Optimization for Doubly Fed Wind Power Generation Systems,” IEEE Transactions on Industry Applications, Vol. 35, No. 4, 1999, pp. 949-958. doi:10.1109/28.777205

[4] K. Tan and S. Islam, “Optimal Control Strategies in Energy Conversion of PMSG Wind Turbine System without Mechanical Sensors,” IEEE Transactions on Energy Conversion, Vol. 19, No. 2, 2004, pp. 392-399. doi:10.1109/TEC.2004.827038

[5] M. G. Simoes, B. K. Bose and R. J. Spiegel, “Fuzzy Logic Based Intelligent Control of a Variable Speed Cage Machine Wind Generation System,” IEEE Transactions on Power Electronics, Vol. 12, No. 1, 1997, pp. 87-95. doi:10.1109/63.554173

[6] H. Li, K. L. Shi and P. G. McLaren, “Neural-Network- Based Sensorless Maximum Wind Energy Capture with Compensated Power Coefficient,” IEEE Transactions on Industry Applications, Vol. 41, No. 6, 2005, pp. 1548- 1556. doi:10.1109/TIA.2005.858282

[7] V. Calderaro, V.Galdi, A.Piccolo and P.Siano, “A Fuzzy Controller for Maximum Energy Extraction from Variable Speed Wind Power Generation Systems,” Electric Power Systems Research, Vol. 78, No. 6, 2008, pp. 1109-1118. doi:10.1016/j.epsr.2007.09.004

[8] V. Galdi, A. Piccolo and P.Siano, “Exploiting Maximum Energy from Variable Speed Wind Power Generation Systems by Using an Adaptive Takagi-Sugeno-Kang fuzzy Model,” Energy Conversion and Management, Vol. 50, No. 2, 2009, pp. 413-421. doi:10.1016/j.enconman.2008.09.004

[9] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 15, No. 1, 1985, pp. 116-132. doi:10.1109/TSMC.1985.6313399

[10] J. J-SR, “ANFIS Adaptive-network-based Fuzzy Inference Systems,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No. 3, 1993, pp. 665-85. doi:10.1109/21.256541

[11] X. N. Yu, F. Z. Cheng, L. L. Zhu and Y. J. Wang, “ANFIS Modeling Based on T-S Model and Its Application for Thermal Process,” Proceedings of the CSEE, Vol. 26, No. 15, 2006, pp. 78-82.

[12] A. D. Hansen, P. Sørensen, F. Iov and F. Blaabjerg, “Control of Variable Speed Wind Turbines with Doubly-fed Induction Generators,” Wind Engineering, Vol. 4, No. 28, 2004, pp. 411-432. doi:10.1260/0309524042886441

[13] S. Heier and R. Waddington, “Grid Integration of Wind Energy Conversion System,” 2nd Edition, Wiley, West Sussex, 2006.

[14] S. S. Haykin, “Neural networks: A Comprehensive Foundation,” 2nd Edition, Prentice Hall, USA, 1999.

[15] M. T. Hagan, H. B. Demuth and M. Beale, “Neural Network Design,” 1st Edition, Thomson Learning, Boston, 1996.

[16] R. Y. Ronald and P. F. Dimitar, “Approximate Clustering via the Mountain Method,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 24, No. 8, 1994, pp.1279-1284. doi:10.1109/21.299710

[17] J. Wolberg, “Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments,” 1st Edition, Springer, Germany, 2005.

[18] T. Strutz, “Data Fitting and Uncertainty (a practical introduction to Weighted Least Squares and Beyond),” 1st Edition, Vieweg Teubner, Germany, 2010.