[1] J. J. Hwang, “Promotional Policy for Renewable Energy Development in Taiwan,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 3, 2010, pp. 1079-1087. doi:10.1016/j.rser.2009.10.029
[2] R. Hara, et al., “Testing the Technologies: Demonstration Grid-connected Photovoltaic Projects in Japan,” IEEE Power and Energy Magazine, Vol. 7, No. 3, May/June 2009, pp. 77-85.
[3] W. X. Shen, “Optimally Sizing of Solar Array and Battery in Standalone Photovoltaic System in Malaysia,” Renewable Energy, Vol. 34, No.1, 2009, pp. 348-352. doi:10.1016/j.renene.2008.03.015
[4] G. B. Shrestha and L. Goel, “A Study on Optimal Sizing of Stand-alone Photovoltaic Stations,” IEEE Transactions on Energy Conversion, Vol.13, No. 4, 1998, pp.373-378. doi:10.1109/60.736323
[5] S. B. Borowy and Z. M. Salameh, “Methodology for Optimal Sizing of the Combi-nation of a Battery Bank and PV Array in a Wind/PV Hybrid System,” IEEE Transactions on Energy Conversion, Vol. 11, No. 2, 1996, pp.367-375.
[6] Jose L. Bernal-Agustin and R. Dufo-Lopez, “Simulation and Optimization of Stand-alone Hybrid Renewable Energy Systems,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 8, 2009, pp. 2111-2118.
[7] RETS, 2004. Available: http://www.retscreen.net/ang/t_software.php
[8] RERL, 2007. Available: http://www.ceere.org/rerl/projects/software/hybrid2/Hy2_users_manual.pdf.
[9] Homer, The Hybrid Optimiza-tion Model for Electric Renewable, Available: http://www.nrel.gov/homer/includes/downloads/HOMERBrochure_English.pdf.
[10] J. Holland, Adaptation in Natural and Artificial Systems: The University of Michigan. 1975
[11] P. Arun, R. Banerjee and S. Bandyo-padhyay, “Optimal sizing of Photovoltaic Battery Systems Incorporating Uncertainty through Design Space Approach,” Solar Energy, Vol. 83, No.7, 2009, pp.1013-1025. doi:10.1016/j.solener.2009.01.003
[12] Y. X. Hong, Z. Wei, L. Lin and F. H. Zhao, “Opimal Sizing Method for Stand-alone Hybrid Solar-wind System with LPSP Technology by using Genetic Algorithm,” Solar Energy, 2008, pp. 354-367.