Closed Form Moment Formulae for the Lognormal SABR Model and Applications to Calibration Problems

Show more

References

[1] P. S. Hagan, D. Kumar, A. S. Lesniewski and D. E. Woodward, “Managing Smile Risk,” Wilmott Magazine, 2002, pp. 84-108.
http://www.wilmott.com/pdfs/021118_smile.pdf

[2] J. C. Cox, J. E. Ingersoll and S. A. Ross, “A Theory of the Term Structure of Interest Rates,” Econometrica, Vol. 53, No. 2, 1985, pp. 385-407.

[3] F. Black and M. Scholes, “c,” Journal of Political Economy, Vol. 81, No. 3, 1973, pp. 637-659.

[4] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, “The Use of Statistical Tests to Calibrate the Normal SABR Model,” Journal of Inverse and IllPosed Problems, Vol. 21, No. 1, 2013, pp. 59-84.
http://www.econ.univpm.it/recchioni/finance/w15

[5] S. Mergner, “Application of State Space Models in Finance,” Universitätsverlag Göttingen, Göttingen, 2004.

[6] F. Mariani, G. Pacelli and F. Zirilli, “Maximum Likelihood Estimation of the Heston Stochastic Volatility Model Using Asset and Option Prices: An Application of Nonlinear Filtering Theory,” Optimization Letters, Vol. 2, No. 2, 2008, pp. 177-222.
http://www.econ.univpm.it/pacelli/mariani/finance/w1.

[7] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, “Maximum Likelihood Estimation of the Parameters of a System of Stochastic Differential Equations That Models the Returns of the Index of Some Classes of Hedge Funds,” Journal of Inverse and Ill-Posed Problems, Vol. 15, No. 5, 2007, pp. 329-362.
http://www.econ.univpm.it/recchioni/finance/w5

[8] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, “Some Explicitly Solvable SABR and Multiscale SABR Models: Option Pricing and Calibration,” Journal of Mathematical Finance, Vol. 3, No. 1, 2013, pp. 10-32.
http://dx.doi.org/10.4236/jmf.2013.31002
http://www.econ.univpm.it/recchioni/finance/w14

[9] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, “Higher Trascendental Functions,” McGraw-Hill Book Company, New York, 1953.

[10] J. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities,” The Journal of Finance, Vol. 42, No. 2, 1987, pp. 281-300.
http://dx.doi.org/10.1111/j.1540-6261.1987.tb02568.x

[11] B. A. Surya, “Two-Dimensional Hull-White Model for Stochastic Volatility and Its Nonlinear Filtering Estimation,” Procedia Computer Science, Vol. 4, 2011, pp. 1431-1440. http://dx.doi.org/10.1016/j.procs.2011.04.154

[12] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, “Tables of Integral Transforms,” McGraw-Hill Book Company, New York, 1954.

[13] P. L. Lions and M. Musiela, “Correlations and Bounds for Stochastic Volatility Models,” Annales de l’Institut Henri Poincaré (C) Analyse Non Linèaire, Vol. 24, No. 1, 2007, pp. 1-16.

[14] P. Wilmott, “Paul Wilmott Introduces Quantitative Finance,” Wiley Desktop Editions, Chichester, 2007.