OJSS  Vol.3 No.6 , October 2013
Copper Phytoextraction and Phytostabilization by Brachiaria decumbens Stapf. in Vineyard Soils and a Copper Mining Waste
ABSTRACT
Brachiaria decumbens is a high biomass plant with great potential for phytoremediation of copper-polluted soils. The current study aimed to evaluate B. decumbens plants for phytoextraction and phytostabilization use in two different copper contaminated vineyard soils and a copper mining waste. Also, the macro and micronutrients uptake were evaluated after plants growth in copper contaminated soils. B. decumbens was cultivated in two vineyard soils (Inceptisol and Mollisol) and a copper mining waste for 47 days of growth in greenhouse. Then, B. decumbens’s nutrient uptake was evaluated, and it’s potential application in phytoremediation techniques for the phytoextraction and phytostabilization of copper contamination. B. decumbens exhibited high levels of biomass production at contaminated soils and no negative effect on macronutrients uptake was found. Copper contaminated soils affected micronutrients uptake by Brachiaria plants. This Brachiaria specie showed high potential on copper phytoextraction with accumulation of copper concentrations in the shoots and roots of 70 and 585 mg·kg-1 of dry mass, respectively, in the vineyard Inceptisol soil, after 47 days of growth. Mollisol soil and copper mining waste also exhibited high copper concentration in the biomass in the entire plant with 371 and 466 mg·kg-1, respectively. Although Brachiaria exhibited low levels of translocation factor for copper, this specie showed high potential for copper phytoextraction on Inceptisol, Mollisol and copper mining waste with 1900, 1156 and 1363 g·ha-1 of copper, respectively. In summary, B. decumbens plants showed high potential for copper phytoextraction and phytostabilization of copper on contaminated vineyard soils and copper mining waste

Cite this paper
R. Andreazza, L. Bortolon, S. Pieniz, F. Camargo and E. Bortolon, "Copper Phytoextraction and Phytostabilization by Brachiaria decumbens Stapf. in Vineyard Soils and a Copper Mining Waste," Open Journal of Soil Science, Vol. 3 No. 6, 2013, pp. 273-282. doi: 10.4236/ojss.2013.36032.
References
[1]   A. V. Geen and S. N. Luoma, “The Impact of Human Activities on Sediments of San Francisco Bay, California: An Overview,” Marine Chemistry, Vol. 64, No. 1-2, 1999, pp. 1-6.
http://dx.doi.org/10.1016/S0304-4203(98)00080-2

[2]   A. E. Alnenaei and M. Authman, “Impact of Human Activities on Aluminum Contamination in the Drainage Canals in the Nile Delta, Egypt,” Abstracts/Toxicology Letters, Vol. 1, No. 1, pp. S337-S351.
http://dx.doi.org/10.1051/e3sconf/20130111004

[3]   H. Zhang and B. Shan, “Historical Records of Heavy Metal Accumulation in Sediments and the Relationship with Agricultural Intensification in the Yangtze-Huaihe Region, China,” Science of the Total Environment, Vol. 399, No. 1-3, 2008, pp. 113-120.
http://dx.doi.org/10.1016/j.scitotenv.2008.03.036

[4]   L. Laybauer, “Incremento de Metais Pesados na Drenagem Receptora de EFLUENTEs de Mineracao-Minas do Camaqua, Sul do Brasil,” Revista Brasileira de Recursos Hídricicos, Vol. 3, No. 3, 1998, pp. 29-36.

[5]   C. Garbisu and I. Alkorta, “Phytoextraction: A Cost-Effective Plant-Based Technology for the Removal of Metals from the Environment,” Bioresource Technology, Vol. 77, No. 3, 2001, pp. 229-236.
http://dx.doi.org/10.1016/S0960-8524(00)00108-5

[6]   S. C. McCutcheon and J. L. Schnoor, “Phytoremediation: Transformation and Control of Contaminants,” WileyInterscience, Hoboken, 2003.

[7]   Z. Fischerová, P. Tlustos, J. Száková and K. Sichorova, “A Comparison of Phytoremediation Capability of Selected Plant Species for Given Trace Elements,” Environmental Pollution, Vol. 144, No. 1, 2006, pp. 93-100.
http://dx.doi.org/10.1016/j.envpol.2006.01.005

[8]   L. Raskin., R. D. Smith and D. E. Salt, “Phytoremediation of Metals: Using Plants to Remove Pollutants from the Environment,” Current Opinion in Biotechnology, Vol. 8, No. 1, 1997, pp. 221-226.
http://dx.doi.org/10.1016/S0958-1669(97)80106-1

[9]   J. L. Gardea-Torresdey, J. R. Peralta-Videa, M. Montes, G. Rosa and B. Corral-Diaz, “Bioaccumulation of Cadmium, Chromium and Copper by Convolvulus arvensis L.: Impact on Plant Growth and Uptake of Nutritional Elements,” Bioresource Technology, Vol. 92, No. 3, 2004, pp. 229-235.
http://dx.doi.org/10.1016/j.biortech.2003.10.002

[10]   R. Clemente, C. Almela and M. P. Bernal, “A Remediation Strategy Based on Active Phytoremediation Followed by Natural Attenuation in a Soil Contaminated by Pyrite Waste,” Environmental Pollution, Vol. 143, No. 3, 2006, pp. 397-406.

[11]   C. Mant, S. Costa, J. Williams and E. Tambourgi, “Phytoremediation of Chromium by Model Constructed Wetland,” Bioresource Technology, Vol. 97, No. 15, 2006, pp. 1767-1772. http://dx.doi.org/10.1016/j.biortech.2005.09.010

[12]   F. S. Santos, J. Hernández-Allica, J. M. Becerril, N. Amaral-Sobrinho, N. Mazur and C. Garbisu, “Chelate-Induced Phytoextraction of Metal Polluted Soils with Brachiaria decumbens,” Chemosphere, Vol. 65, No. 1, 2006, pp. 43-50. http://dx.doi.org/10.1016/j.chemosphere.2006.03.012

[13]   S. Bose, J. Vedamati, V. Rai and A. L. Ramanathan, “Metal Uptake and Transport by Tyaha angustata L. Grown on Metal Contaminated Waste Amended Soil: An Implication of Phytoremediation,” Geoderma, Vol. 145, No. 1-2, 2008, pp. 136-142.
http://dx.doi.org/10.1016/j.geoderma.2008.03.009

[14]   A. Saifullah, E. Meers, M. Qadir, P. Caritat, F. M. G. Tack, D. G. Laing and M. H. Zia, “EDTA-Assisted Pb Phytoextraction,” Chemosphere, Vol. 74, No. 10, 2008, pp. 1279-1291.
http://dx.doi.org/10.1016/j.chemosphere.2008.11.007

[15]   R. Chandra and S. Yadav, “Potential of Typha angustifolia for Phytoremediation of Heavy Metals from Aqueous Solution of Phenol and Melanoidin,” Ecological Engineering, Vol. 36, No. 10, 2010, pp. 1277-1284.
http://dx.doi.org/10.1016/j.ecoleng.2010.06.003

[16]   L. Buendia-Gonzalez, J. Orozco-Villafuerte, F. Cruz-Sosa, C. E. Barrera-Diaz and E. J. Vernon-Carter, “Prosopis laevigata a Potential Chromium (VI) and Cadmium (II) Hyperaccumulator Desert Plant,” Bioresource Technology, Vol. 101, No. 15, 2010, pp. 5862-5867.
http://dx.doi.org/10.1016/j.biortech.2010.03.027

[17]   A. Ruttens, M. Mench, J. V. Colpaert, J. Boisson, R. Carleer and J. Vangronsveld, “Phytostabilization of a Metal Contaminated Sandy Soil. I: Influence of Compost and/or Inorganic Metal Immobilizing Soil Amendments on Phytotoxicity and Plant Availability of Metals,” Environmental Pollution, Vol. 144, No. 2, 2006, pp. 524-532.
http://dx.doi.org/10.1016/j.envpol.2006.01.038

[18]   M. T. Domínguez, F. Madrid, T. Maranón and J. M. Murillo, “Cadmium Availability in Soil and Retention in Oak Roots: Potential for Phytostabilization,” Chemosphere, Vol. 76, No. 4, 2009, pp. 480-486.
http://dx.doi.org/10.1016/j.chemosphere.2009.03.026

[19]   J. Kumpiene, G. Guerri, L. Landi, G. Pietramellara, P. Nannipieri and G. Renella, “Microbial Biomass, Respiration and Enzyme Activities after in Situ Aided Phytostabilization of a Pband Cu-Contaminated Soil,” Ecotoxology and Environmental Safety, Vol. 72, No. 1, 2008, pp. 115-119. http://dx.doi.org/10.1016/j.ecoenv.2008.07.002

[20]   L. V. Nevel, J. Mertens, J. Staelens, A. D. Schrijver, F. M. G. Tack, S. D. Neve, E. Meers and K. Verheyen, “Elevated Cd and Zn Uptake by Aspen Limits the Phytostabilization Potential Compared to Five Other Tree Species,” Ecological Engineering, Vol. 37, No. 7, 2011, pp. 10721080. http://dx.doi.org/10.1016/j.ecoleng.2010.07.010

[21]   P. Alvarenga, A. P. Goncalves, R. M. Fernandes, A. Varennes, G. Vallini, E. Duarte and A. C. Cunha-Queda, “Organic Residues as Immobilizing Agents in Aided Phytostabilization: (I) Effects on Soil Chemical Characteristics,” Chemosphere, Vol. 74, No. 10, 2009, pp. 12921300. http://dx.doi.org/10.1016/j.chemosphere.2008.11.063

[22]   J. J. San José, R. Bracho and N. Nikonova, “Comparison of Water Transfer as a Component of the Energy Balance in a Cultivated Grass (Brachiaria decumbens Stapf.) Field and a Savanna during the Wet Season of the Orinoco Llanos,” Agricultural and Forest Meteorology, Vol. 90, No. 1-2, 1998, pp. 65-79.
http://dx.doi.org/10.1016/S0168-1923(97)00092-0

[23]   I. M. Rao, J. W. Miles and J. C. Granobles, “Differences in Tolerance to Infertile Acid Soil Stress among Germplasm Accessions and Genetic Recombinants of the Tropical Forage Grass Genus, Brachiaria,” Field Crop Research, Vol. 59, No. 1, 1998, pp. 43-52.
http://dx.doi.org/10.1016/S0378-4290(98)00106-3

[24]   P. Wenzl, A. L. Chaves, J. E. Mayer, I. M. Rao and M. G. Nair, “Roots of Nutrient-Deprived Brachiaria Species Accumulate 1,3-Di-O-trans-feruloylquinic Acid,” Phytochemistry, Vol. 55, No. 5, 2000, pp. 389-395.
http://dx.doi.org/10.1016/S0031-9422(00)00350-2

[25]   R. Andreazza, B. C. Okeke, M. R. Lambais, L. Bortolon, G. W. B. Melo and F. A. O. Camargo, “Bacterial Stimulation of Copper Phytoaccumulation by Bioaugmentation with Rhizosphere Bacteria,” Chemosphere, Vol. 81, No. 9, 2010, pp. 1149-1154.
http://dx.doi.org/10.1016/j.chemosphere.2010.09.047

[26]   V. J. C. H. Schouwvenberg and I. Walinge, “Methods of Analysis for Plant Material,” Agriculture University, Wageningen, 1973.

[27]   J. Yoon, X. Cao, Q. Zhou and L. Q. Ma, “Accumulation of Pb, Cu, and Zn in Native Plants Growing on a Contaminated Florida Site,” Science of the Total Environment, Vol. 368, No. 2-3, 2006, pp. 456-464.
http://dx.doi.org/10.1016/j.scitotenv.2006.01.016

[28]   G. Shi and Q. Cai, “Cadmium Tolerance and Accumulation in Eight Potential Energy Crops,” Biotechnology Advances, Vol. 27, No. 5, 2009, pp. 555-561.
http://dx.doi.org/10.1016/j.biotechadv.2009.04.006

[29]   P. M. Kopittke, C. J. Asher, F. P. C. Blamey and N. W. Menzies, “Toxic Effects of Cu2+ on Growth, Nutrition, Root Morphology, and Distribution of Cu in Roots of Sabi Grass,” Science of the Total Environment, Vol. 407, No. 16, 2009, pp. 4616-4621.
http://dx.doi.org/10.1016/j.scitotenv.2009.04.041

[30]   F. Vinit-Dunand, D. Epron, B. Alaoui-Sossé and P. Badot, “Effects of Copper on Growth and on Photosynthesis of Mature and Expanding Leaves in Cucumber Plants,” Plant Science, Vol. 163, No. 1, 2002, pp. 53-58.
http://dx.doi.org/10.1016/S0168-9452(02)00060-2

[31]   F. Vinit-Dunand, D. Epron, B. Alaoui-Sossé and P. Badot, “Effects of Copper on Growth and on Photosynthesis of Mature and Expanding Leaves in Cucumber Plants,” Plant Science, Vol. 163, No. 1, 2002, pp. 53-58.
http://dx.doi.org/10.1016/S0168-9452(02)00060-2

[32]   B. Alaoui-Sossé, P. Genet, F. Vinit-Dunand, M. Toussaint, D. Epron and P. Badot, “Effect of Copper on Growth in Cucumber Plants (Cucumis sativus) and Its Relationships with Carbohydrate Accumulation and Changes in Ion Contents,” Plant Science, Vol. 166, No. 5, 2004, pp. 1213-1218. http://dx.doi.org/10.1016/j.plantsci.2003.12.032

[33]   C. A. Pineda-Vargas, V. M. Prozesky, W. J. Przybylowicz and J. E. Mayer, “Correspondence Analysis Evaluation of Linear Nutrient Distribution in Root Tips of the Tropical Forage Brachiaria brizantha,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 181, No. 1-4, 2001, pp. 493-498.
http://dx.doi.org/10.1016/S0168-583X(01)00625-5

[34]   W. Ke, Z. T. Xiong, S. Chen and J. Chen, “Effects of Copper and Mineral Nutrition on Growth, Copper Accumulation and Mineral Element Uptake in Two Rumex japonicus Populations from a Copper Mine and an Uncontaminated Field Sites,” Environmental and Experimental Botany, Vol. 59, No. 1, 2007, pp. 59-67.
http://dx.doi.org/10.1016/j.envexpbot.2005.10.007

[35]   H. Bouazizi, H. Jouili, A. Geitmann and E. E. Ferjani, “Copper Toxicity in Expanding Leaves of Phaseolus vulgaris L.: Antioxidant Enzyme Response and Nutrient Element Uptake,” Ecotoxology and Environmental Safety, Vol. 73, No. 6, 2010, pp. 1304-1308.
http://dx.doi.org/10.1016/j.ecoenv.2010.05.014

[36]   C. Chen, T. Chen, K. Lo and C. Chiu, “Effects of Proline on Copper Transport in Rice Seedlings under Excess Copper Stress,” Plant Science, Vol. 166, No. 1, 2004, pp. 103-111. http://dx.doi.org/10.1016/j.plantsci.2003.08.015

[37]   J. R. Peralta-Videa, J. L. Gardea-Torresdey, E. Gomez, K. J. Tiemann, J. G. Parsons and G. Carrillo, “Effect of Mixed Cadmium, Copper, Nickel and Zinc at Different pHs upon Alfalfa Growth and Heavy Metal Uptake,” Environmental Pollution, Vol. 119, No. 3, 2002, pp. 291301. http://dx.doi.org/10.1016/S0269-7491(02)00105-7

[38]   R. M. Boddey, R. Macedo, R. Tarré, E. Ferreira, O. C. Oliveira, C. P. Rezende, R. B. Cantarutti, J. M. Pereira, B. J. R. Alves and S. Urquiaga, “Nitrogen Cycling in Brachiaria pastures: The Key to Understanding the Process of Pasture Decline,” Agriculture Ecosystem and the Environment, Vol. 103, No. 2, 2004, pp. 389-403.
http://dx.doi.org/10.1016/j.agee.2003.12.010

[39]   K. F. Gobbi, R. Garcia, A. F. G. Neto, O. G. Pereira, M. C. Ventrella and G. C., Rocha, “Características Morfológicas, Estruturais e Produtividade do Capim Braquiária e do Amendoim Forrageiro Submetidos ao Sombreamento,” Revista Brasileira de Zootecnia, Vol. 38, No. 9, 2009, pp. 1645-1654.

[40]   A. F. Magalhaes, A. J. V. Pires, G. G. P. Carvalho, F. F Silva, R. S. Sousa and C. M. Veloso, “Influência do Nitrogênio e Do Fósforo na Producao do Capim-Braquiária,” Revista Brasileira de Zootecnia, Vol. 36, No. 5, 2007, pp. 1240-1246.
http://dx.doi.org/10.1590/S1516-35982007000600004

[41]   C. G. S. Benett, O. M. Yamashita, P. S. Koga and K. S. Silva, “Resposta da Brachiaria brizantha cv. Marandu a Diferentes Tipos de Adubacao,” Revista de Ciências Agro-Ambientais, Vol. 6, No. 1, 2008, pp. 13-20.

[42]   F. C. L. Freitas, F. A. Ferreira, L. R. Ferreira, M. V. Santos and E. L. Agnes, “Cultivo Consorciado de Milho Para Silagem com Brachiaria brizantha no Sistema de Plantio Convencional,” Planta Daninha, Vol. 23, No. 4, 2005, pp. 635-644. http://dx.doi.org/10.1590/S0100-83582005000400011

[43]   W. Trujillo, M. J. Fisher and R. Lal, “Root Dynamics of Native Savanna and Introduced Pastures in the Eastern Plains of Colombia,” Soil Tillage Research, Vol. 87, No. 1, 2006, pp. 28-38.
http://dx.doi.org/10.1016/j.still.2005.02.038

 
 
Top