OJAS  Vol.3 No.4 , October 2013
Effects of plant latex based anti-termite formulations on Indian white termite Odontotermes obesus (Isoptera: Odontotermitidae) in sub-tropical high infestation areas
Abstract: In the present investigation various bioassays were conducted to evaluate the anti-termite efficacy of plant latex based formulations to control population of Indian white termite in subtropical soil. Results reveal that crude latex, its fractions and combinatorial fractions have shown very high toxicity against O. obesus. The LD50 values for different latex fractions of 24 h were in a range of 5.0-17.613 μg/mg while combined mixtures of Calotropis procera have shown synergistic activity against termites and caused comparably high mortality with LD50 1.987-6.016 μg/mg. The mortality rate was found dose and time dependent as it was found to be increased with an increase in dose and exposure period. In olfactometry tests, C. procera latex solvent fractions have shown significant repellency at a very low dose 0.010-0.320 μg/mg. Interestingly, solvent fractions have significantly repelled large numbers of worker termites due to volatile action of active components of latex and different additives. ED50 values obtained in crude latex were 0.121 μg/mg body weights while combinatorial formulations have shown ED50 in between 0.015-0.036 μg/mg. Statistical analysis of repelled and un-repelled termites gave a low Chi-square value (X2 value = 0.890) which is an indicator of independence of repellent action in randomly selected termite groups. In field experiments pre-soaked cotton threads impregnated with Calotropis procera crude latex were tagged around tree trunks of Tectona grandis provided a wider protection against O. obesus. By employing these pre-coated threads, termite infestation and tunneling activity were significantly decreased (p < 0.05 and 0.01). When germinating crop plants were sprayed with various plant latex formulations, these have caused very high protective efficacy against termite infestation. It has significantly reduced crop losses up to 6.45%. There was a significant difference in infestation obtained in control and treatment groups (P < 0.05 and 0.01) which shows that Calotropis procera possesses enough anti-termite potential against Indian white termite, O. obesus population. If used these, formulations may also provide wide a range of control against other kinds of pests including house hold, medical and veterinary. However, Calotropis procera latex based formulations can be recommended for effective control of termites in high infestation areas by applying spray, or in form of poison baits or as fumigant in pure form.
Cite this paper: Upadhyay, R. (2013) Effects of plant latex based anti-termite formulations on Indian white termite Odontotermes obesus (Isoptera: Odontotermitidae) in sub-tropical high infestation areas. Open Journal of Animal Sciences, 3, 281-294. doi: 10.4236/ojas.2013.34042.

[1]   Jitunari, F., Asakawa, F., Takeda, N., Suna, S. and Manabe, Y. (1995) Chlordane compounds and metabolite residues in termite control workers’ blood. Bulletin of Environmental Contamination and Toxicology, 54, 855-862.

[2]   Valles, S.M. and Woodson, W.D. (2002) Insecticide susceptibility and detoxication enzyme activities among Coptotemes formosanus Shiraki workers sampled from different location in New Orleans. Comparative Biochemistry and Physiology, 131, 469-470.

[3]   Hu, X.P. (2005) Valuation of efficacy and non-repellency of indoxacarb and fibronil treated soil at various concentration and thickness against two subterranean termites (Isoptera: Rhinotermitidea). Journal of Economic Entomology, 98, 509-517.

[4]   Alkofahi, A.J., Rupprecht, K., Anderson, J.E., McLaughlin, J.L. and Mikolajczak, K.L. (1987) A search for new pesticides from higher plants. Insecticides of Plant Origin, ACS Symposium Series 387, Washington DC, 24-25.

[5]   Sabu, T.K. and Vinod, K.V. (2009) Population dynamics of the rubber plantation litter beetle Luprops tristis, in relation to annual cycle of foliage phenology of its host, the para rubber tree, Hevea brasiliensis. Journal of Insect Science, 9, 1-10.

[6]   Hagel, J.M., Yeung E.C. and Facchini, P.J. (2008) Got milk? The secret life of laticifers. Trends in Plant Science, 13, 631-639.

[7]   Carlini, C.R. and Grossi-de-Sa, M.F. (2002) Plant toxic proteins with insecticidal properties—A review on the potentialities as bioinsecticides. Toxicon, 40, 1515-1539.

[8]   Sukumar, K., Perich, M.J. and Boobar, L.R. (1991) Botanical derivatives in mosquito control: A review. Journal of the American Mosquito Control Association, 7, 10-37.

[9]   Shaalan, E.A.S., Canyon, D., Younesc, M.W.F., AbdelWahab, H. and Mansoura A.H. (2005) A review of botanical phytochemicals with mosquitocidal potential. Environment International, 31, 1149-1166.

[10]   Castillo, L.E., Jiménez, J.J. and Delgado, M.A. (2010) Secondary metabolites of the Annonaceae. Solanaceae and meliaceae families used as biological control of the insects. Tropical and Subtropical Agroecosystems, 12, 445-462.

[11]   Giridhar, G., Deval, K., Mittal, P.K. and Vasudevan, P. (1984) Mosquito control by Calotropis procera latex. Pesticides, 18, 26-29.

[12]   Moursy, L.E. (1997) Insecticidal activity of Calotropis procera extracts on the flesh fly Sarcophaga haemorrhoidalis Fallen. Journal of the Egyptian Society of Parasitology, 2, 505-514.

[13]   Morsy, T.A., Rahem M.A. and Allam K.A. (2001) Control of Musca domestica third instar larvae by the latex of Calotropis procera (Family: Asclepiadaceae). Journal of the Egyptian Society of Parasitology, 31, 107-110.

[14]   Singh, R.K., Mittal, P.K. and Dhiman, R.C. (2005) Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae. The Journal of Communicable Diseases, 37, 109-113.

[15]   Ramos, M.V., Bandeira, G.P, De Freitas, C.D.T., Nogueira, N.A.P., Alencar, N.M.N., De Sousa, P.A.S. and Carvalho, A.F.U. (2006) Latex constituents from Calotropis procera (R. Br.) display toxicity upon egg hatching and larvae of Aedes aegypti (Linn) Memórias do Instituto Oswaldo Cruz, 101, 503-510.

[16]   Badshah, H., Farrnanullah, Z., Salihah, Z., Saljoqi, à.U.R. and Shakur, M. (2004) Toxic effects of Ak (Calotrpis procera) plant extracts against termites (Heterotermes indicola and Coptotermes heimi) isoptera: Rhinotermitidae Pakistan. Journal of Bíologícal Sciences, 7, 1603-1606.

[17]   Singh, N. and Kumar, S. (2008) Antitermite activity of Jatropha curcas Linn. Biochemicals. Journal of Applied Sciences and Environmental Management, 12, 67-69.

[18]   Buranov, A.U. and Elmuradov, B.J. (2010) Extraction and Characterization of Latex and Natural Rubber from Rubber-bearing Plants. Journal of Agricultural and Food Chemistry, 58, 734-743.

[19]   McCay, S. and Mahlberg, P. (1973) Study of Antibacterial Activity and Bacteriology of Latex from Asclepias syriaca L. Antimicrobial Agents and Chemotherapy, 3, 247-253.

[20]   Finney, D.J. (1971) Probit analysis. 3rd Edition, Cambridge University London, Cambridge, 333.

[21]   Sokal, R.R. and Rohlf, F.J. (1973) In introduction to biostatstics, W H & Co., San Francisco.

[22]   Russell, R.M, Robertso, J.L. and Savin, N.E. (1977) POLO: A new computer program for probit analysis. Bulletin of the Entomological Society of America, 23, 209-213.

[23]   Begum, N., Sharma, B. and Pandey, R.S. (2010) Evaluation of insecticidal efficacy of Calotropis procera and Annona squamosa ethanol extracts against Musca domestica. Journal of Biofertilizers & Biopesticides, 1, 101-105.

[24]   Shahi, M., Hanafi-Bojd, A.A., Iranshahi, M., Vatandoost, H. and Hanafi-Bojd, M. (2010) Larvicidal efficacy of latex and extract of Calotropis procera (Gentianales: Asclepiadaceae) against Culex quinquefasciatus and Anopheles stephensi (Diptera: Culicidae). Journal of Vector Borne Diseases, 47, 185-188.

[25]   Singhi, M, Joshi, V., Sharma, R.C. and Sharma, K. (2004) Oviposition behaviour of Aedes aegypti in different concentrations of latex of Calotropis procera: Studies on refractory behavior and its sustenance across gonotrophic cycles. Dengue Bulletin, 28, 184-188.

[26]   Obregón, W.D., Liggieri, C.S, Trejo S.A, Avilés, F.X., Vairo-Cavalli, S.E. and Priolo, N.S. (2009) Characterization of papain-like isoenzymes from latex of Asclepias curassavica by molecular biology validated by proteomic approach. Biochimie, 91, 1457-1464.

[27]   Abdul Rahuman, A., Venkatesan, P., Geetha, K., Gopalakrishnan, G., Bagavan, A. and Kamaraj, C. (2008) Mosquito larvicidal activity of gluanol acetate a tetracyclic triterpenes derived from Ficus racemosa Linn. Parasitology Research, 103, 333-339.

[28]   Mendonca, P.M. Lima, M.G., Albuquerque, L.R., Carvalho, M.G. and Queiroz, M.M. (2011) Effects of latex from “Amapazeiro” Parahancornia amapa (Apocynaceae) on blowfly Chrysomya megacephala (Diptera: Calliphoridae) post-embryonic development. Veterinary Parasitology, 178, 379-382.

[29]   Hutchins, R.A. (1996) Evaluation of the natural anti-termitic properties of Aleurites fordii (Tung tree) extracts. US Patent, Patent no. 60/016,682.

[30]   Hirayama, C., Konno, K., Wasano, N. and Nakamura, M., (2007) Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: Enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochemistry and Molecular Biology, 37, 1348-1358.

[31]   Oppel, C.B., Dussourd, D.E. and Garimella, U. (2009) Visualizing a plant defense and insect counter play: Alkaloid distribution in Lobelia leaves trenched by a plusiine caterpillar. Journal of Chemical Ecology, 35, 625-634.

[32]   Seetharaman, T.R. (1986) Flavonoids from the leaves of Annona squamosa and Polyalthia longifolia. Fitoterapia, 57, 189-198.

[33]   Boue, S.M. and Raina, A.K. (2003) Effects of plant flavonoids on fecundity, survival, and feeding of the Formosan subterranean termite. Journal of Chemical Ecology, 29, 2575-2584.

[34]   Arihara, S., Umeyama, A. Bando, S. Imoto, S., Ono, M. and Yoshikawa, K., (2004) Three new sesquiterpenes from black heartwood of Crytomeria japonica. Chemical & Pharmaceutical Bulletin, 52, 463-465.

[35]   Mazoir, N., Benharref, A, Bailén, M., Reina, M. and González-Coloma, A. (2008) Bioactive triterpene derivatives from latex of two Euphorbia species. Phytochemistry, 69, 1328-1338.

[36]   Fokialakis, N., Osbrink, W.L., Mamonov, L.K., Gemejieva, N.G., Mims, A.B., Skaltsounis, A.L., Lax, A.R. and Cantrell, C.L. (2006) Antifeedant and toxicity effects on thiophenes from four Echinops spices against the Formosan subterranean termite, Coptotermes formosanus. Pest Management Science, 62, 832-838.

[37]   Wititsuwannakul, R., Wititsuwannakul, D. and Sakulborirug, C. (1998) A lectin from the bark of the rubber tree (Hevea brasiliensis). Phytochemistry, 47, 183-187.

[38]   Lam, K.S. and Tzi, B.N. (2011) Lectins: Production and practical applications. Applied Microbiology and Biotechnology, 89, 45-55.

[39]   Wasano, N., Konno, K., Nakamura, M., Hirayama, C., Hattori, M. and Tateishi, K. (2009) A unique latex protein, MLX56, defends mulberry trees from insects. Phytochemistry, 70, 880-888.

[40]   Rupprecht, J.K., Hui, Y.H. and McLaughlin, J.L. (1990) Annonaceous acetogenins: A review. Journal of Natural Products, 53, 237-276.

[41]   Rahman, I., Gogoi, I., Dolui, A.K. and Handique, R. (2005) Toxicological study of plant extracts on the termite and laboratory animals. Journal of Environmental Biology, 26, 239-241.

[42]   Kinyanjui, T., Gitu, P.M. and Kamau, G.N. (2000) Potential antitermite compounds from Juniperus procera extracts. Chemosphere, 41, 1071-1014.

[43]   Diaz-Perales, A., Collada, C., Blanco, C., SanchezMonge, R., Carrillo, T., Aragoncillo, C. and Salcedo, G. (1998) Class I chitinases with hevein-like domain but not class II enzymes are relevant chestnut and avocado allergens. The Journal of Allergy and Clinical Immunology, 102, 127-133.

[44]   Kitajima, K., Kamei, S., Taketani, M., Yamaguchi, F., Kawai, A. and Komatsu, Y.I. (2010) Two chitinase-like proteins abundantly accumulated in latex of mulberry show insecticidal activity. BMC Biochemistry, 11, 6-11.

[45]   Ding, X., Gopalakrishnan, B., Johnson, L.B., White, F.F., Wang, X., Morgan, T.D., Kramer, K.J. and Muthukrishnan, S. (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Research, 7, 77-84.

[46]   Domsalla, A. and Melzig, M.F. (2008) Occurrence and properties of proteases in plant latices. Planta Medica, 74, 699-711.

[47]   Yagami, T., Sato, M., Nakamura, A., Komiyama, T., Kitagawa, K., Akasawa, A. and Ikezawa, Z. (1998) Plant defense-related enzymes as latex antigens. The Journal of Allergy and Clinical Immunology, 101, 379-385.

[48]   Sequira, B.J., Vital, B.J., Pohlit, A.M., Pararols, I.C. and Cauper, G.S.B. (2009) Antibacterial and antifungal activity of extracts and exudates of the Amazonian medicinal tree Himatanthus articulates (Vahl) Woodson (Common neme: Sucuba). Memórias do Instituto Oswaldo Cruz, 104, 34-39.

[49]   Ramos, M.V., Pereira, D.A., Souza, D.P., Araújo, E.S., Freitas, C.D.T., Cavalheiro, M.G., Matos, M.P.V. and Carvalho, A.F.U. (2009) Potential of laticifer fluids for inhibiting Aedes aegypti larval development: Evidence for the involvement of proteolytic activity. Memórias do Instituto Oswaldo Cruz, 104, 805-812.

[50]   Yagami, T. (1998) Plant defense-related proteins as latex allergens. Bulletin of National Institute of Health Sciences, 116, 46-62.

[51]   Giovanelli, A., da Silva, C.L., Medeiros, L. and de Vasconcellos, M.C. (2001) The molluscicidal activity of the latex of Euphorbia splendens var. hislopii on Melanoides tuberculata (Thiaridae), a snail associated with habitats of Biomphalaria glabrata (Planorbidae). Memórias do Instituto Oswaldo Cruz, 96, 123-125.

[52]   Blaske, V.U. and Hertel, H. (2001) Repellent and toxic effects of plant extracts on subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Enotomology, 94, 1200-1208.

[53]   Farias, L.R., Costa, F.T., Souza, L.A., Pelegrini, P.B., Grossi-de-Sá, M.F., Neto, S.M., Bloch Jr., C., Laumann, R.A., Noronha, E.F. and Franco, O.L. (2007) Isolation of a novel Carica papaya α-amylase inhibitor with deleterious activity toward Callosobruchus maculatus. Pesticide Biochemistry and Physiology, 87, 255-260.

[54]   Giordani, R., Benyahia, S., Teissere, M. and Noat, G. (1992) Purification and properties of N-acetyl-β-glucosaminase from Hevea brasiliensis latex. Plant Science, 84, 25-34.

[55]   Salunke, B.K., Kotkar, H.M., Mendki, P.S., Upasani, S.M. and Maheshwari, V.L. (2005) Efficacy of flavanoids in controlling Callosobruchus chinensis (L.) (Coleoptera:Bruchidae), a post-harvest pest of grain legumes. Crop Protection, 24, 888-893.

[56]   Sadegh, A., Van Damme, E.J.M., Peumans, W.J. and Smagghe, G. (2006) Deterrent effect of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition. Phytochemistry, 67, 2078-2084.

[57]   Freitas, C.D.T., Oliveira, J.S., Miranda, R.A., Macedo, N.M.R., Sales, M.P., Villas-Boas, L.A. and Ramos, M.V. (2007) Enzymatic activities and protein profile of latex from Calotropis procera. Plant Physiology and Biochemistry, 45, 781-789.

[58]   Freitas, C.D.T., Souza, D.P., Araújo, E.S., Cavalheiro, M.G., Oliveira, L.S. and Ramos, M.V. (2010) Anti-oxidative and proteolytic activities and protein profile of laticifer cells of Cryptostegia grandiflora, Plumeria rubra and Euphorbia tirucalli. Brazilian Journal of Plant Physiology, 22, 11-22.

[59]   Domsalla, A. and Melzing, M.F. (2008) Occurrence and properties of proteases in plant latices. Planta Medica, 74, 699-711.

[60]   Dubey, V.K. and Jagannadham, M.V. (2003) Procerain, a stable cysteine protease from the latex of Calotropis procera. Phytochemistry, 62, 1057-1071.

[61]   Konno, K., Hirayamura, C., Tateishi, K., Tamura, Y. and Hattori, M. (2004) Papain protects papaya trees from herbivorous insects: Role of cysteine proteases in latex. The Plant Journal, 37, 370-378.

[62]   Ramos, M.V., Grangeiro, T.B., Freire, E.A., Sales, M.P., Souza, D.P., Araújo, E.S. and Freitas, C.D.T. (2010) The defensive role of latex in plants: Detrimental effects on insects. Arthropod-Plant Interactions, 4, 57-67.

[63]   Azarkan, M., Amrani, A., Nus, M., Vandermeers, A., Zerhouni, S., Smolders, N. and Looze, Y. (1997) Carica papaya is a rich source of a class II chitinase. Phytochemistry, 48, 1319-1325.

[64]   Pechan, T., Cohen, A., Williams, W.P. and Luthe, D.S. (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proceedings of the National Academy of Sciences of the United States of America, 99, 13319-13323.

[65]   Fiorillo, F., Palocci, C., Soro, S. and Pasqua, G. (2007) Latex lipase of Euphorbia characias L: A specific acylhydrolase with several isoforms. Plant Science, 172, 722-727.

[66]   Yeang, H.Y., Arif, SAM, Yusof, F. and Sunderasan, E. (2002) Allergenic proteins of natural rubber latex. Methods, 27, 32-45.

[67]   Ramos, M.V., Araújo, E.S., Oliveira, R.S.B., Teixeira, F.M., Pereira, D.A., Cavalheiro, M.G., Souza, D.P., Oliveira. J.S. and de Freitas, C.D.T. (2011) Latex fluids are endowed with insect repellent activity not specifically related to their proteins or volatile substances. Brazilian Journal of Plant Physiology, 23, 57-66.

[68]   Braga, Y.F., Grangeiro, T.B., Freire, E.A., Lopes, H.L., Bezerra, J.N., Andrade-Neto, M. and Lima, M.A. (2007) Insecticidal activity of 2-tridecanone against cowpea weevil Callosobruchus maculates (Coleoptera: Bruchidae). Anais da Academia Brasileira de Ciências, 79, 35-39.

[69]   Ramos, M.V., Freitas, C.D.T., Staniscuaski, F., Macedo, L.L.P., Sales, M.P., Souza, D.P. and Carlini, C.R. (2007) Performance of distinct crop pests reared on diets enriched with latex proteins from Calotropis procera: Role of laticifer proteins in plant defense. Plant Science, 173, 349-357.

[70]   Zhu, B.C., Handerson, G., Chen, F., Masitrello, L. and Laine, R.A. (2001) Nootkatone is repellent for Formosan subterranean termites (Coptotermes formosanus). Journal of Chemical Ecology, 27, 523-531.

[71]   Zhu, B.C., Henderson, G., Sauer, A.M., Yu, Y., Crowe, W. and Lanie, R.A. (2003) Structure-activity of valencenoid derivates and their repellence to the Formosan subterranean termite. Journal of Chemical Ecology, 29, 2695-2701.

[72]   Osbrin, W.L. and Lax, A.R. (2003) Effect of imidacloprid tree treatments on the occurrence of Formosan subterranean termites, Coptotermes formosanus shiraki (Isoptera: Rhinotermitidae), in independent monitors. Journal of Economic Entomology, 96, 117-125.

[73]   Upadhyay, R.K., Jaiswal, G., Ahmad, S., Leena, K. and Jain, S.C. (2012) Antitermite activities of C. deciduas extracts and pure compounds against Indian White termite Odontotermes obesus (Isoptera: Odontotermitidae). Psyche, 2012, Article ID 820245.

[74]   Chen, K., Ohmura, W., Doi, S. and Aoyama, M. (2004) Termite feeding deterrent from Japanese larch wood. Bioresource Technology, 95, 129-134.

[75]   Shibutani, S., Smejima, M. and Doi, S. (2004) Effects of stilbenes from bark of Picea glehnii (Sieb. Et. Zucc) and their related compounds against feeding behavior of Reticulitermes speratus. Journal of Wood Science, 50, 439-444.

[76]   Ibrahim, S.A., Henderson, G., Fei, H. and Lanie, R.A. (2004) Survivorship, tunneling and feeding behaviors of Coptotermes formosanus (Isoptera: Rhinotermitidae) in response to 2’-acetonaphthone-treaed sand. Pest Management Science, 60, 746-754.

[77]   Rojas, M.G. and Morales-Ramos, J.A. (2001) Bait matrix for delivery of chitin synthesis inhibitior to the formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 94, 506-510.

[78]   Ganapaty, S., Thomas, P.S. and Fotso, L.H. (2004) Antitermite quinines from Diospyros sylvatica. Phytochemistry, 65, 1265-1267.

[79]   Serit, M., Ishida, M., Hagiwara, N., Kim, M., Yamamoto, T. and Takahashi, S. (1992) Meliaceae and rutaceae limonoids as termite antifeedents evaluated using Reticulitermes speratus Kolbe ((Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 18, 593-603.

[80]   Meepagala, K.M., Osbrink, W., Mims, A.B., Lax, A.R. and Duke, S.O. (2006) Amides based on natural products against Formosan subterranean termites (Coptotermes formosanus). Natural Product Utilization Research. US Patent.

[81]   Nunes, L.T., Nobre, B., Gigante, A. and Silva, M. (2004) Toxicity of pine resin derivatives to subterranean termites (Isoptera: Rhinotermitidae). Management Environoental Quality International Journal, 15, 521-528.

[82]   Cornelius, M.L., Grace, J.K. and Yates, J.R. (1997) Toxicity of monoterpenoids and other natural products to the formosan subterranean termite (Isoptera: Rhinoter-mitidae). US Patents No. 1997049246.

[83]   Kim, J.H., Liu, K.H., Yoon, Y., Sornnuwat, Y., Kitirattrakarn, T. and Anantachoke, C. (2006) Essential leaf oils from Melaleuca cajuputi. Traditional medicine and nutraceuticals ISHS. III WOCMAP congress on medicinal and aromatic plants. Acta Horticulturae, 6, 680.

[84]   Cheng, S.S., Wu, C.L., Chang, Y.T. and Chang, S.T. (2004) Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. Journal of Chemical Ecology, 30, 1957-1967.

[85]   Tellez, M.R., Khan, I.A., Kobaisy, M., Schrader, K.K. and Dayan, F.E. (2002) Composition of essential oil of Lepidium meyenii (Walp). Phytochemistry, 61, 149-155.

[86]   Park, I.K. and Shin, S.C. (2005) Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe). Journal of Agriculture and Food Chemistry, 53, 4388-4392.

[87]   Zhu, B.C., Henderson, G., Yu, Y. and Laine, R.A. (2003) Toxicity and repellency of patchouli oil and patchouli alcohol against Formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Agricultural Food Chemistry, 51, 4585-4588.

[88]   Su, N.Y., Ban, P.M. and Scheffrahn, R.H. (2000) Control of Coptotermes havilandi (Isopetera: Rhinotermitidae) with hexaflumuron baits and a sensor incorporated into a monitoring and baiting program. Journal of Economic Entomology, 93, 415-421.

[89]   Cornelius, M.L. and Lax, A.R. (2005) Effects of summon preferred food source on feeding, tunneling and bait station discovery by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 98, 502-508.

[90]   Mwalongo, G.C.J., Mkayula, L.L., Mubofu, E.B. and Mwingira, B.A. (1999) Preventing termite attack: Environmentally friendly chemical combinations of cashew nut shell liquid, sulfited wattle tannin and copper (II) chloride. Green Chemistry, 35, 13-16.

[91]   Grace, J.K. and Abdallay, A. (1990) Termiticidal activity of boron dusts (Isoptera: Rhinotermitidae). Journal of Applied Entomology, 109, 283-288.

[92]   Meepagala, K.M., Osbrink, W., Sturtz, G. and Lax, A. (2006) Plant derived natural products exhibiting activity against Formosan subterranean termites (Coptotermes formosanus). Pest Management Science, 62, 565-570.