OJMS  Vol.3 No.4 , October 2013
Mucus Glycoproteins Selectively Secreted from Bacteriocytes in Gill Filaments of the Deep-Sea Clam Calyptogena okutanii
ABSTRACT

The deep-sea clam Calyptogena okutanii possesses a large gill containing vertically transmitted symbiotic sulfur-oxidizing bacteria. It produces large amounts of highly viscoelastic mucus from the gill, which is thought to be a physical and chemical barrier. The mucus collected from the gill was shown to be composed of glycoproteins having the following sugar composition: Man (17.4%), GlcNAc (16.6%), GalNAc (15%), Glc (1.1%), Gal (29.9%), Xyl (3.0%), Fuc (14.4%), and unknown (2.6%), indicating that it contained mucin-like glycoproteins. In a monoclonal antibody library against the gill tissue, we found a monoclonal antibody (mAb), CokG-B3C10, reacting to the mucus. Western blot analysis using the mAb showed that it reacted to several glycoproteins in the mucus from the gill tissue, but not with those of other tissues such as the mantle, foot, and ovary, where mucus production has been reported in bivalves. Further, immunohistochemical analysis showed the CokG-B3C10 mAb reacting to glycoproteins was detected in the inner area of the gill, which was occupied by many bacteriocytes in the row of gill filaments. Strong mAb signals were found on the outer surface of the bacteriocytes facing the interfilamental space, and in the interfilamental spaces between filaments. Weaker signals were also observed in the bacteriocyte cells. These results indicate that the CokG-B3C10 mAbbinding mucus glycoproteins were produced from cells including bacteriocytes and nonbacteriocyte cells in the inner area of the gill filaments.


Cite this paper
Y. Nakamura, M. Konishi, K. Ohishi, C. Kusaka, A. Tame, Y. Hatada, K. Fujikura, M. Nakazawa, M. Fujishima, T. Yoshida and T. Maruyama, "Mucus Glycoproteins Selectively Secreted from Bacteriocytes in Gill Filaments of the Deep-Sea Clam Calyptogena okutanii," Open Journal of Marine Science, Vol. 3 No. 4, 2013, pp. 167-174. doi: 10.4236/ojms.2013.34019.
References
[1]   C. M. Cavanaugh, S. L. Gardiner, M. L. Jones, H. W. Jannasch and J. B. Waterbury, “Prokaryotic Cells in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic Symbionts,” Science, Vol. 213, No. 4505, 1981, pp. 340-342.
http://dx.doi.org/10.1126/science.213.4505.340

[2]   H. Felbeck, J. J. Childress and G. N. Somero, “CalvinBenson Cycle and Sulphide Oxidation Enzymes in Animals from Sulphide-Rich Habitats,” Nature, Vol. 293, No. 5830, 1981, pp. 291-293.
http://dx.doi.org/10.1038/293291a0

[3]   K. J. Boss and R. D. Turner, “The Giant White Clam from the Galapagos Rift, Calyptogena magnifica, Species Novum,” Malacologia, Vol. 20, No. 1, 1980, pp. 161-194.

[4]   C. M. Cavanaugh, “Symbiotic Chemoautotrophic Bacteria in Marine Invertebrates from Sulphide-Rich Habitats,” Nature, Vol. 302, No. 5903, 1983, pp. 58-61.
http://dx.doi.org/10.1038/302058a0

[5]   A. Fiala-Medioni and C. Metivier, “Ultrastructure of the Gill of the Hydrothermal Vent Bivalve Calyptogena magnifica, with a Discussion of Its Nutrition,” Marine Biology, Vol. 90, No. 2, 1986, pp. 215-222.
http://dx.doi.org/10.1007/BF00569130

[6]   S. C. Cary and S. J. Giovannoni, “Transovarial Inheritance of Endosymbiotic Bacteria in Clams Inhabiting Deep-Sea Hydrothermal Vents and Cold Seeps,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 90, No. 12, 1993, pp. 5695-5699. http://dx.doi.org/10.1073/pnas.90.12.5695

[7]   K. Endow and S. Ohta, “Occurrence of Bacteria in the Primary Oocytes of Vesicomyid Clam Calyptogena soyoae,” Marine Ecology Progress Series, Vol. 64, No. 3, 1990, pp. 309-311. http://dx.doi.org/10.3354/meps064309

[8]   B. Morton, “The Functional Morphology of the Organs of Feeding and Digestion of the Hydrothermal Vent Bivalve Calyptogena magnifica (Vesicomyidae),” Journal of Zoology, Vol. 208, No. 1, 1986, pp. 83-98.
http://dx.doi.org/10.1111/j.1469-7998.1986.tb04711.x

[9]   M. J. Kennish and R. A. Lutz, “The Hydrothermal Vent Clam, Calyptogena magnifica (Boss and Turner, 1980): A Review of Existing Literature,” Reviews in Aquatic Science, Vol. 6, No. 1, 1992, pp. 29-66.

[10]   H. Kuwahara, T. Yoshida, Y. Takaki, S. Shimamura, S. Nishi, M. Harada, K. Matsuyama, K. Takishita, M. Kawato, K. Uematsu, Y. Fujiwara, T. Sato, C. Kato, M. Kitagawa, I. Kato and T. Maruyama, “Reduced Genome of the Thioautotrophic Intracellular Symbiont in a Deep-Sea Clam, Calyptogena okutanii,” Current Biology, Vol. 17, No. 10, 2007, pp. 881-886.
http://dx.doi.org/10.1016/j.cub.2007.04.039

[11]   I. L. G. Newton, T. Woyke, T. A. Auchtung, G. F. Dilly, R. J. Dutton, M. C. Fisher, K. M. Fontanez, E. Lau, F. J. Stewart, P. M. Richardson, K. W. Barry, E. Saunders, J. C. Detter, D. Wu, J. A. Eisen and C. M. Cavanaugh, “The Calyptogena magnifica Chemoautotrophic Symbiont Genome,” Science, Vol. 315, No. 5814, 2007, pp. 998-1000.
http://dx.doi.org/10.1126/science.1138438

[12]   M. S. Davies and S. J. Hawkins, “Mucus from Marine Molluscs,” In: J. H. S. Blaxter, A. J. Southward and P. A. Tyler, Eds., Advances in Marine Biology, Academic Press Ltd.-Elsevier Science Ltd., London, 1998, pp. 1-71.

[13]   C. Calabro, M. P. Albanese, S. Martella, P. Licata, E. R. Lauriano, C. Bertuccio and A. Licata, “Glycoconjugate Histochemistry and nNOS Immunolocalization in the Mantle and Foot Epithelia of Tapes philippinarum (Bivalve Mollusc),” Folia Histochemica et Cytobiologica, Vol. 43, No. 3, 2005, pp. 151-156.

[14]   S. C. Dufour and P. G. Beniger, “A Functional Interpretation of Cilia and Mucocyte Distributions on the Abfrontal Surface of Bivalve Gills,” Marine Biology, Vol. 138, No. 2, 2001, pp. 295-309.
http://dx.doi.org/10.1007/s002270000466

[15]   A. Gomez-Mendikute, M. Elizondo, P. Venier and M. P. Cajaraville, “Characterization of Mussel Gill Cells in Vivo and in Vitro,” Cell and Tissue Research, Vol. 321, No. 1, 2005, pp. 131-140.
http://dx.doi.org/10.1007/s00441-005-1093-9

[16]   M. A. Sleigh, “Adaptations of Ciliary Systems for the Propulsion of Water and Mucus,” Comparative Biochemistry and Physiology Part A: Physiology, Vol. 94, No. 2, 1989, pp. 359-364.
http://dx.doi.org/10.1016/0300-9629(89)90559-8

[17]   P. G. Beninger and S. C. Dufour, “Mucocyte Distribution and Relationship to Particle Transport on the Pseudolamellibranch Gill of Crossostrea virginica (Bivalve: Ostreidae),” Marine Ecology Progress Series, Vol. 137, No. 1-3, pp. 133-138.

[18]   P. G. Beninger, S. St. Jean, Y. Poussart and J. E. Ward, “Gill Function and Mucocyte Distribution in Placopecten magellanicus and Mytilus edulis (Mollusca: Bivalvia): The Role of Mucus in Particle Transport,” Marine Ecology Progress Series, Vol. 98, No. 3, 1993, pp. 275-282.
http://dx.doi.org/10.3354/meps098275

[19]   J. E. Ward, J. S. Levinton, S. E. Shumway and T. Cucci, “Particle Sorting in Bivalves: In Vivo Determination of the Pallial Organs of Selection,” Marine Biology, Vol. 131, No. 2, 1998, pp. 283-292.
http://dx.doi.org/10.1007/s002270050321

[20]   H. Silverman, J. W. Lynn, P. G. Beninger and T. H. Dietz, “The Role of Latero-Frontal Cirri in Particle Capture by the Gills of Mytilus edulis,” The Biological Bulletin, Vol. 197, No. 3, 1999, pp. 368-376.
http://dx.doi.org/10.2307/1542791

[21]   M. Harada, T. Yoshida, H. Kuwahara, S. Shimamura, Y. Takaki, C. Kato, T. Miwa, H. Miyake and T. Maruyama, “Expression of Genes for Sulfur Oxidation in the Intercellular Chemoautotrophic Symbiont of the Deep-Sea Bivalve Calyptogena okutanii,” Extremophiles, Vol. 13, No. 6, 2009, pp. 895-903.
http://dx.doi.org/10.1007/s00792-009-0277-8

[22]   N. Seno, K. Anno, Y. Yaegashi and T. Okuyama, “Microheterogeneity of Chondroitin Sulfates from Various Cartilages,” Connective Tissue Research, Vol. 3, No. 1, 1975, pp. 87-96.
http://dx.doi.org/10.3109/03008207509152345

[23]   N. Izawa, T. Hanamizu, R. Iizuka, T. Sone, H. Mizukoshi, K. Kimura and K Chiba, “Streptococcus thermophilus Produces Exopolysaccharides including Hyaluronic Acid,” Journal of Bioscience and Bioengineering, Vol. 107, No. 2, 2009, pp. 119-123.
http://dx.doi.org/10.1016/j.jbiosc.2008.11.007

[24]   G. Galfre and C. Milstein, “Preparation of Monoclonal Antibodies: Strategies and Procedures,” Methods in Enzymology, Vol. 73, 1981, pp. 3-46.
http://dx.doi.org/10.1016/0076-6879(81)73054-4

[25]   Y. Sekiguchi, Y. Kamagata, K. Sytsubo, A. Ohashi, H. Harada and K. Nakamura, “Phylogenetic Diversity of Mesophilic and Thermophilic Granular Sludges Determined by 16S rRNA Gene Analysis,” Microbiology, Vol. 144, No. 9, 1998, pp. 2655-2665.
http://dx.doi.org/10.1099/00221287-144-9-2655

[26]   M. Derrien, M. W. van Passel, J. H. van de Bovenkamp, R. G. Schipper, W. M. de Vos and J. Dekker, “MucinBacterial Interactions in the Human Oral Cavity and Digestive Tract,” Gut Microbes, Vol. 1, No. 4, 2010, pp. 254-268. http://dx.doi.org/10.4161/gmic.1.4.12778

[27]   H. Y. Ahn, L. F. Sue, J. K. Ma, C. A. Pinkstaff, R. S. Pore, D. O. Overman and C. J. Malanga, “Synthesis and Secretion of Mucus Glycoprotein by the Gill of Mytilus edulis. I. Histochemical and Chromatographic Analysis of [14C] Glucosamine Bioincorporation,” Biochimica et Biophysica Acta (BBA)-General Subjects, Vol. 966, No. 1, 1988, pp. 122-132.
http://dx.doi.org/10.1016/0304-4165(88)90136-5

[28]   S. Salminen, M. Laine, A. Vonwright, J. Vuopio-Varkila, T. Korhonen and T. Mattila-Sandholm, “Development of Selection Criteria for Probiotic Strains to Access their Potential in Functional Food: A Nordic and European Approach,” Bioscience and Mircoflora, Vol. 15, No. 2, 1996, pp. 61-67.
http://dx.doi.org/10.1111/j.1574-6968.1998.tb13226.x

[29]   P. V. Kirjavainen, A. C. Ouwehand, E. Isolauri and S. J. Salminen, “The Ability of Probiotic Bacteria to Bind to Human Intestinal Mucus,” FEMS Microbiology Letters, Vol. 167, No. 2, 1998, pp. 185-189.

[30]   V. Lievin-Le Moal and A. L. Servin, “The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota,” Clinical Microbiology Reviews, Vol. 19, No. 2, 2006, pp. 315-337.
http://dx.doi.org/10.1128/CMR.19.2.315-337.2006

[31]   S. K. Linde, P. Sutton, N. G. Karlsson, V. Korolik and M. A. McGuckin, “Mucins in the Mucosal Barrier to Infection,” Mucosal Immunology, Vol. 1, No. 3, 2008, pp. 183197. http://dx.doi.org/10.1038/mi.2008.5

[32]   C. K. Chun, J. V. Troll, I. Koroleva, B. Brown, L. Manzella, E. Snir, H. Almabrazi, T. E. Scheetz, M. F. Bonaldo, T. L. Casavant, M. B. Soares, E. G. Ruby and M. J. McFallNgai, “Effects of Colonization, Luminescence, and Autoinducer on Host Transcription during Development of the Squid-Vibrio Association,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 32, 2008, pp. 11323-11328.
http://dx.doi.org/10.1073/pnas.0802369105

[33]   S. Bulgheresi, I. Schabussova, T. Chen, N. P. Mullin, R. M. Maizels and J. A. Ott, “A New C-Type Lectin Similar to the Human Immunoreceptor DC-SIGN Mediates Symbiont Acquisition by a Marine Nematode,” Applied and Environmental Microbiology, Vol. 72, No. 4, pp. 2950-2956. http://dx.doi.org/10.1128/AEM.72.4.2950-2956.2006

[34]   J. P. Gourdine and E. J. Smith-Ravin, “Analysis of a cDNA-Derived Sequence of a Novel Mannose-Binding Lectin, Codakine, from the Tropical Clam Codakia orbicularis,” Fish & Shellfish Immunology, Vol. 57, No. 5, 2007, pp. 498-509.
http://dx.doi.org/10.1016/j.fsi.2006.06.013

[35]   S. V. Nyholm and M. J. McFall-Ngai, “Dominance of Vibrio fischeri in Secreted Mucus outside the Light Organ of Euprymna scolopes: The First Site of Symbiont Specificity,” Applied and Environmental Microbiology, Vol. 69, No. 7, 2003, pp. 3932-3937.
http://dx.doi.org/10.1128/AEM.69.7.3932-3937.2003

 
 
Top