AiM  Vol.3 No.6 A , October 2013
Isolation and Characterization of Cyanobacterial Community Including a Microcystin-Producing Nostoc sp. Strain in the Nile River, Egypt
ABSTRACT
The combined use of morphological identification and phylogenetic characterization employing primers that target the 16S rDNA region led to the identification of ten isolates belonging to eight cyanobacterial genera in the Nile River. 16S-23S ITS region was amplified to confirm two isolates to be affiliated to genus Nostoc. Using MALDI-TOF/MS, we detected the production of the hepatotoxic demethylated MC-LR by one isolate that clustered together with the genus Nostoc. Protein phosphatase inhibition assay has confirmed toxicity. Our results add to the rising importance of Nostoc as a hepatotoxin-producing cyanobacterium. Furthermore, our results stress that water municipalities in the studied region need to assess the potential threat of toxic cyanobacteria that may pose to human health and economy.

Cite this paper
R. Amer, R. Shehawy, S. El-Dien, M. Serie and K. Shaker, "Isolation and Characterization of Cyanobacterial Community Including a Microcystin-Producing Nostoc sp. Strain in the Nile River, Egypt," Advances in Microbiology, Vol. 3 No. 6, 2013, pp. 38-46. doi: 10.4236/aim.2013.36A005.
References
[1]   R. El-Shehawy, E. Gorokhova, F. Fernández-Pinas and F. F. Del Campo, “Global Warming and Hepatotoxin Production by Cyanobacteria: What Can We Learn from Experiments?” Water Research, Vol. 46, No. 5, 2012, pp. 1420-1429. http://dx.doi.org/10.1016/j.watres.2011.11.021

[2]   H. W. Paerl and J. Huisman, “Blooms Like It Hot,” Science, Vol. 320, No. 5872, 2008, pp. 57-58.
http://dx.doi.org/10.1126/science.1155398

[3]   W. W. Carmichael, “Health Effects of Toxin Producing Cyanobacteria: ‘The CyanoHABs’,” Human and Ecological Risk Assessment, Vol. 7, No. 5, 2001, pp. 1393-1407. http://dx.doi.org/10.1080/20018091095087

[4]   J. Goldberg, H. B. Huang, Y. G. Kwon, P. Greengard, A. C. Nairn and J. Kuriyan, “Three-Dimensional Structure of the Catalytic Subunit of Protein Serine/Threonine Phos- phatase-1,” Nature, Vol. 376, 1995, pp. 745-753.
http://dx.doi.org/10.1038/376745a0

[5]   Z. A. Mohamed, H. M. el-Sharouny and W. S. Ali, “Microcystin Production in Benthic Mats of Cyanobacteria in the Nile River and Irrigation Canals, Egypt,” Toxicon: Official Journal of the International Society on Toxinology, Vol. 47, No. 5, 2006, pp. 584-590.

[6]   R. Amer, B. Diez and R. El-Shehawy, “Diversity of Hepatotoxic Cyanobacteria in the Nile Delta, Egypt,” Journal of environmental monitoring: JEM, Vol. 11, No. 1, 2009, pp. 126-133.

[7]   J. Komárek and K. Anagnostidis, “Cyanoprokaryota,” Sübwasserflora von Mitteleuropa, Gustav Fischer, Jena Stuttgart Lübeck Ulm, 2005.

[8]   D. Tillett and A. Neilan, “Xanthogenate Nucleic Acid Isolation from Cultured and Environmental Cyanobacteria,” Journal of Phycology, Vol. 36, No. 1, 2000, pp. 251-258.
http://dx.doi.org/10.1046/j.1529-8817.2000.99079.x

[9]   U. Nübel, F. Garcia-Pichel and G. Muyze, “PCR Primers to Amplify 16S RRNA Genes from Cyanobacteria,” Applied and Environmental Microbiology, Vol. 63, No. 8, 1997, pp. 3327-3332.

[10]   I. Iteman, R. Rippka, N. T. de Marsac and M. Herdman, “Comparison of Conserved Structural and Regulatory Domains within Divergent 16S rRNA-23S rRNA Spacer Sequences of Cyanobacteria,” Microbiology Vol. 146, No. 6, 2000, pp. 1275-1286.

[11]   K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, “MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods,” Molecular Biology and Evolution, Vol. 28, No. 10, 2011, pp. 2731-2739. http://dx.doi.org/10.1093/molbev/msr121

[12]   A. D. Eaton and M. A. Franson, “Standard Methods for the Examination of Water and Wastewater,” American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC, 2005, pp. 4-14-14-153.

[13]   J. Fastner, I. Flieger and U. Neumann, “Optimised Extraction of Microcystins from Field Samples—A Comparison of Different Solvents and Procedures,” Water Research, Vol. 32, No. 10, 1998, pp. 3177-3181.
http://dx.doi.org/10.1016/S0043-1354(98)00073-6

[14]   S. J.-S. Yoo, J. M. Boylan, D. L. Brautigan and P. A. Gruppuso, “Subunit Composition and Developmental Regulation of Hepatic Protein Phosphatase 2A (PP2A),” Archives of Biochemistry and Biophysics, Vol. 461, No. 2, 2007, pp. 186-193.
http://dx.doi.org/10.1016/S0043-1354(98)00073-6

[15]   T. Heresztyn and B. C. Nicholson, “Determination of Cyanobacterial Hepatotoxins Directly in Water Using a Protein Phosphatase Inhibition Assay,” Water Research, Vol. 35, No. 13, 2001, pp. 3049-3056.
http://dx.doi.org/10.1016/S0043-1354(01)00018-5

[16]   F. Garcia-Pichel, “The Cyanobacteria: Molecular Biology, Genomics and Evolution,” In: A. Herrero and E. Flores Eds., Molecular Ecology and Environmental Genomics of Cyanobacteria, Caister Academic Press, UK, 2008, pp. 60-87.

[17]   R. E. Honkanen, B. A. Codispoti, K. Tse and A. L. Boynton, “Characterization of Natural Toxins with Inhibitory Activity against Serine/Threonine Protein Phosphatases,” Toxicon: Official Journal of the International Society on Toxinology, Vol. 32, No. 3, 1994, pp. 339-350.

[18]   V. H. Smith, “Nitrogen, Phosphorus and Nitrogen Fixation in Lacustrine and Estuarine Ecosystems,” Limnology and Oceanography, Vol. 35, No. 8, 1990, pp. 1852-1859.

[19]   J. P. Jensen, E. Jeppesen, K. Olrik and P. Kristensen, “Impact of Nutrients and Physical Factors on the Shift from Cyanobacteria to Chlorophyte in Shallow Danish Lakes,” Canadian Journal of Fisheries and Aquatic Sciences, Vol. 51, No. 8, 1994, pp. 1692-1699.
http://dx.doi.org/10.1139/f94-170

[20]   J. A. Downing, S. B. Watson and E. McCauley, “Predicting Cyanobacteria Dominance in Lakes,” Canadian Journal of Fisheries and Aquatic Sciences, Vol. 58, No. 10, 2001, pp. 1905-1908.
http://dx.doi.org/10.1139/f01-143

[21]   H. W. Paerl and R. S. Fulton, “Ecology of Harmful Cyanobacteria,” In: E. Graneli and J. T. Turner, Eds., Ecological Studies, Ecology of Harmful Algae, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 95-109.
http://dx.doi.org/10.1007/978-3-540-32210-8

[22]   N. D. Crosbie, M. Pockl and T. Weisse, “Dispersal and Phylogenetic Diversity of Non-Marine Picocyanobacteria, Inferred from 16S rRNA Gene and cpcBA—Intergenic Spacer Sequence Analyses,” Applied and Environmental Microbiology, Vol. 69, No. 9, 2003, pp. 5716-5721.
http://dx.doi.org/10.1128/AEM.69.9.5716-5721.2003

[23]   A. Ernst, S. Becker, U. I. A. Wollenzien and C. Postius, “Nitrate and Phosphate Affect Cultivability of Cyanobacteria from Environments with Low Nutrient Levels,” Applied and Environmental Microbiology, Vol. 149, No. 1, 2003, pp. 217-228.

[24]   J. Stockner, C. Callieri and G. Cronberg, “Picoplankton and Other Non-Bloom-Forming Cyanobacteria in Lakes,” In: B. A. Whitton and P. M. Eds., The Ecology of Cyanobacteria: Their Diversity in Time and Space, Kluwer Academic Publishers, Dordrecht, 2000, pp. 195-231.

[25]   R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman and R. Y. Stanier, “Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria,” Microbiology, Vol. 111, No. 1, 1979, pp. 1-61.
http://dx.doi.org/10.1099/00221287-111-1-1

[26]   J. Komárek, “Diversita a Moderní Klasifikace Sinic (Cyanoprocaryota) [Diversity and Modern Classification of Cyanobacteria (Cyanoprokaryota),” Inaugural Dissertation, 1992, not published.

[27]   B. Bergman, J. R. Gallon, A. N. Rai and S. L. J., “N2-Fixation by Non-Heterocystous Cyanobacteria,” FEMS Microbiology Reviews, Vol. 19, No. 3, 1997, pp. 139-185.
http://dx.doi.org/10.1016/S0168-6445(96)00028-9

[28]   J. Mayer, M. T. Dokulil, M. Salbrechter, M. Berger, T. Posch and G. E. A. Pfister, “Seasonal Successions and Trophic Relations between Phytoplankton, Zooplankton, Ciliate and Bacteria in a Hypertrophic Shallow Lake in Vienna, Austria,” Hydrobiologia, Vol. 342-343, 1997, pp. 165-174. http://dx.doi.org/10.1023/A:1017098131238

[29]   J. Rücker, C. Wiedner and P. Zippel, “Factors Controlling the Dominance of Planktothrix Agardhii and Limnothrix Redekei in Eutrophic Shallow Lakes,” Hydrobiologia, Vol. 342-343, 1997, pp. 107-115.
http://dx.doi.org/10.1023/A:1017013208039

[30]   G. Zwart, M. P. Kamstvan Agterveld, I. van der Werff-Staverman, F. Hagen, H. L. Hoogveld and H. J. Gons, “Molecular Characterization of Cyanobacterial Diversity in a Shallow Eutrophic Lake,” Environmental Microbiology, Vol. 7, No. 3, 2005, pp. 365-377.
http://dx.doi.org/10.1111/j.1462-2920.2005.00715.x

[31]   R. Willame, C. Boutte, S. Grubisic, A. Wilmotte, J. Komarek and H. L., “Morphological and Molecular Characterization of Planktonic Cyanobacteria from Belgium and Luxembourg,” Journal of Phycology, Vol. 42, No. 6, 2006, pp. 1312-1332.
http://dx.doi.org/10.1111/j.1529-8817.2006.00284.x

[32]   S. G. Acinas, T. H. Haverkamp, J. Huisman and L. J. Stal, “Phenotypic and Genetic Diversification of Pseudanabaena spp. (Cyanobacteria),” The ISME Journal, Vol. 3, No. 1, 2009, pp. 31-46.
http://dx.doi.org/10.1111/j.1529-8817.2006.00284.x

[33]   J. Fastner, M. Erhard and H. von Dhoren, “Determination of Oligopeptide Diversity within a Natural Population of Microcystis spp. (Cyanobacteria) by Typing Single Colonies by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry,” Applied and Environmental Microbiology, Vol. 67, No. 11, 2001, pp. 5069-5076. http://dx.doi.org/10.1128/AEM.67.11.5069-5076.2001

[34]   M. Welker and H. von Dohren, “Cyanobacterial Peptides —Nature’s Own Combinatorial Biosynthesis,” FEMS Microbiology Reviews, Vol. 30, No. 4, 2006, pp. 530-563.
http://dx.doi.org/10.1111/j.1574-6976.2006.00022.x

[35]   M. Welker, B. MarSálek, L. Sejnohová and H. von Dohren, “Detection and Identification of Oligopeptides in Microcystis (Cyanobacteria) Colonies: Toward an Understanding of Metabolic Diversity,” Peptides, Vol. 27, No. 9, 2006, pp. 2090-2103.
http://dx.doi.org/10.1016/j.peptides.2006.03.014

[36]   F. F. del Campo and Y. Ouahid, “Identification of Microcystins from Three Collection Strains of Microcystis aeruginosa,” Environmental Pollution, Vol. 158, No. 9, 2010, pp. 2906-2914.
http://dx.doi.org/10.1016/j.envpol.2010.06.018

[37]   R. Bajpai, N. K. Sharma, L. A. Lawton, C. Edwards and A. K. Rai, “Microcystin Producing Cyanobacterium Nostoc sp. BHU001 from a Pond in India,” Toxicon, Vol. 53, No. 5, 2009, pp. 587-590.

[38]   K. A. Beattie, K. Kaya, T. Sano and G. Codd, “Three Dehydrobutyrine-Containing Microcystins from Nostoc,” Phytochemistry, Vol. 47, No. 7, 1998, pp. 1289-1292.
http://dx.doi.org/10.1016/S0031-9422(97)00769-3

[39]   I. Oksanen, J. Jokela, D. P. Fewer, M. Wahlsten, J. Rikkinen and K. Sivonen, “Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I,” Applied and Environmental Microbiology, Vol. 70, No. 10, 2004, pp. 5756-5763.
http://dx.doi.org/10.1128/AEM.70.10.5756-5763.2004

[40]   K. Sivonen, W. W. Carmichael, M. Namikoshi, K. L. Rinehart, A. M. Dahlem and S. I. NiemelA, “Isolation and Characterization of Hepatotoxic Microcystin Homologs from the Filamentous Fresh-Water Cyanobacterium Nostoc sp. Strain-152,” Applied and Environmental Microbiology, Vol. 56, No. 9, 1990, pp. 2650-2657.

[41]   K. Sivonen, M. Namikoshi, R. Luukkainen, M. Fardig, L. Rouhiainen, W. R. Evans, W. W. Carmichael, K. L. Rinehart and S. I. Niemela, “Variation of Cyanobacterial Hepatotoxins in Finland,” In: M. Munawar and M. Luotola, Eds., The Contaminants in the Nordic Ecosystem, Dynamics, Processes and Fate Ecovision World Monograph Series, SPB Academic Publishing, Amsterdam, 1995, pp. 163-169.

[42]   B. S. F. Wong, P. K. S. Lam, L. H. Xu, Y. Y. Zhang and B. J. Richardson, “A Colorimetric Assay for Screening Microcystin Class Compounds in Aquatic Systems,” Chemosphere, Vol. 38, No. 5, 1999, pp. 1113-1122.
http://dx.doi.org/10.1016/S0045-6535(98)00354-3

 
 
Top