WJCMP  Vol.3 No.4 , November 2013
Bright Green Luminescence from Zirconium Oxide Stabilized with Tb3+ Ions Synthesized by Solution Combustion Technique
Abstract: In this research, the structural phase composition and room temperature luminescence properties of terbium doped zirconium oxide powders obtained by solution combustion synthesis method are presented as a function of the terbium content. The doping with terbium ions was performed during the redox combustion process and after annealing at 900°C during 20 hours. With the incorporation of the terbium ions into the zirconium oxide host, the stabilization of the high temperature tetragonal crystalline phase, as determined by x-ray diffraction technique, was obtained. Under ultraviolet radiation a bright green luminescence was observed at room temperature corresponding to the (4f) electron configuration of the Tb3+ ion, namely the electronic transitions 5D4 → 7Fn with n = 3 - 6. In addition, the undoped ZrO2 material showed green photoluminescence with high intensity.
Cite this paper: López-Romero, S. , García-Hipólito, M. and Aguilar-Castillo, A. (2013) Bright Green Luminescence from Zirconium Oxide Stabilized with Tb3+ Ions Synthesized by Solution Combustion Technique. World Journal of Condensed Matter Physics, 3, 173-179. doi: 10.4236/wjcmp.2013.34028.

[1]   D. E. Harrison, N. T. Melamed and E. C. Subbarao, “A New Family of Self-Activated Phosphoros,” Journal of the Electrochemical Society, Vol. 110, No. 1, 1963, pp. 23-28.

[2]   E. Subbarao, A. H. Euer and L. W. Hobbs, “Science and Technology of Rare Earth Materials,” Science and Technology of Zirconia (Advances in Ceramics), Vol. 3, The American Ceramics Society Inc., Columbus, 1981, pp. 1-24.

[3]   H. Zhang, X. Fu, S. Niu and Q. Xin, “Synthesis and Photoluminescence Properties of Eu3+-Doped AZrO3 (A = Ca, Sr, Ba) Perovsquite,” Journal of Alloys and Compounds, Vol. 459, No. 1-2, 2008, pp. 103-106.

[4]   R. Kelly and I. Denry, “Stabilized Zirconia as a Structural Ceramic: A Review,” Dental Materials, Vol. 24, No. 3, 2008, pp. 289-298.

[5]   R. C. Garvie, “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” The Journal of Physical Chemistry, Vol. 69, No. 4, 1965, pp. 1238-1243.

[6]   W. Sticher and F. Schuth, “Influence of Crystallite on the Properties of Zirconia,” Chemistry of Materials, Vol. 10, No. 7, 1998, pp. 2020-2026.

[7]   J. Ch. Valmalette and M. Isa, “Size Effects on the Stabilization of Ultrafine Zirconia Nanoparticles,” Chemistry of Materials, Vol. 14, No. 12, 2002, pp. 5098-5102.

[8]   F. R. Brito, H. Murrieta, J. A. Hernández, E. Camarillo, M. García-Hipólito, R. M. Martínez, O. A. Fregoso and C. Falcony, “Photoluminescent Spectroscopy Measurement in Nanocrystalline Praseodymium Doped Zirconia Powders,” Journal of Physics D: Applied Physics, Vol. 39, No. 10, 2006, p. 2079.

[9]   X. Liu and X. Wang, “Preparation and Luminescence Properties of BaZrO3:Eu Phosphor Powders,” Optical Materials, Vol. 30, No. 4, 2007, pp. 626-629.

[10]   F. H. Norton, “Fine Ceramics: Technology and Applications cap. 1,” Mcgraw-Hill, New York, 1970.

[11]   B. Mari, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak and M. Kumar, “Preparation and Luminescence Properties of Tb3+ Doped ZrO2 and BaZrO3 Phosphoros,” Journal of Luminescence, Vol. 130, No. 11, 2010, pp. 2128-2132.

[12]   F. Ramos-Brito, M. García-Hipólito, C. Alejo-Armenta, et al., “Characterization of Luminescent Praseodimium Doped ZrO2 Coating Deposited by Ultrasonic Spray Pyrolysis Technique,” Journal of Physics D: Applied Physics, Vol. 40, No. 21, 2007, pp. 6718-6724.

[13]   W. Córdova-Martínez, E. De la Rosa-Cruz, L. A. DíazTorres, et al., “Nanocrystalline Tetragonal Zirconium Oxide Stabilization at Low Temperatures by Using Rare Earth Ions: Sm3+ and Tb3+,” Optical Materials, Vol. 20, No. 4, 2002, pp. 263-271.

[14]   R. Reisfeld, M. Zelner, et al., “Fluorescence Study of Zirconia Films Doped by Eu3+, TB3+ and Sm3+ and Their Comparation with Silica Films,” Journal of Alloys and Compounds, Vol. 300-301, 2000, pp. 147-151.

[15]   F. Ramos-Brito, M. García-Hipólito, R. Martínez-Martínez, et al., “Preparation and Characterization of Photoluminescent Praseodimium-Doped ZrO2 Nanostructured Powders,” Journal of Physics D: Applied Physics, Vol. 37, No. 5, 2004, p. L13.

[16]   I. John Berlin, I. V. Maneseeshya, Jijimon, et al., “Enhancement of Photoluminescence Emission Intensity of Zirconia Thin Films via Aluminum Doping for the Applications of Solid State Lighting in Light Emiting Diode,” Journal of Luminescence, Vol. 132, 2012, pp. 3077-3081

[17]   X. L. Jiao, D. R. Cheng and L. H. Xiao, “Effects of Organic Additives on Hydrothermal Zirconia Nanocrystallites,” Journal of Crystal Growth, Vol. 258, No. 1-2, 2003, pp. 158-162.

[18]   M. Rajendran and M. Subba Rao, “Synthesis and Characterization of Barium Bis (Citrate) Oxozirconato (IV) Tetrahydrate: A New Molecular Precursor for Fine Particle BaZrO3,” Journal of Materials Research, Vol. 9, No. 9, 1994, p. 2277.

[19]   H. A. Abbas, F. F. Hamad, A. K. Mohamad, et al., “Structural Properties of Zirconia Doped with Some Oxides,” Diffusion Fundamentals, Vol. 8, 2008, pp. 7.1-7.8.

[20]   E. H. P. Cordfunke and R. J. M. Konings, “Enthalpy Increments of Barium Zirconate, BaZrO3, and an Assessement of Its Thermochemical Properties,” Thermochimica Acta, Vol. 156, No. 1, 1989, pp. 45-51.

[21]   E. de la Rosa-Cruz, L. A. Diaz-Torres, P. Salas, et al., “Luminescent Properties and Energy Transfer in ZrO2: Sm3+ Nanocrystals,” Journal of Applied Physics, Vol. 94, No. 5, 2003, p. 3509.

[22]   P. M. Kumar, P. Borse, V. K. Rohatgi, et al., “Synthesis and Structural Characterization of Nanocrystalline Aluminium Oxide,” Materials Chemistry and Physics, Vol. 36, No. 3-4, 1994, pp. 354-358.

[23]   T. Rivera, J. Roman, J. Azorin, et al., “Preparation of CaSO4:Dy by Precipitation Method to Gamma Radiation Dosimetry,” Applied Radiation and Isotopes, Vol. 68, No. 4-5, 2010, pp. 623-625.

[24]   T. Rivera, J. Azorin, M. Barrera, et al., “Nanostructural Processing of Advanced Thermoluminescent Materials,” Radiation Effects and Defects in Solids, Vol. 162, No. 10-11, 2007, pp. 731-736.

[25]   C. J. Brinker and G. W. Scherrer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing,” Academic Press Inc., San Diego.

[26]   R. Reisfeld, T. Saraidarov, M. Gaft, et al., “Rare Art Ions, Their Spectroscopy of Cryptates and Related Complex in Sol Gel Glasses,” Optical Materials, Vol. 24, No. 1-2, 2003, pp. 1-13.

[27]   M. R. N. Soares, C. Nico, J. Rodríguez, et al., “Bright Room-Temperature Green Luminescence from YSZ:Tb3+,” Materials Letters, Vol. 65, No. 12, 2011, pp. 1979-1981.

[28]   S.-A. Yan, Y.-S. Chang, J.-W. Wang, et al., “Synthesis and Luminescence Properties of Color Tunable
Ba1-ySrxLa4-xTbx(WO4)7 (x = 0.02 1.2, y = 0 0.04) Phosphoros,” Materials Research Bulletin, Vol. 46, No. 8, 2011, pp. 1231-1236.

[29]   A. Mantre and P. Lefort, “Solid State Reaction of Zirconia with Carbon,” Solid State Ionics, Vol. 104, No. 1-2, 1997, pp. 109-122.

[30]   T. Miamani and K. C. Patil, “Solution Combustion Synthesis of Nanoscale Oxides and Their Composites,” Materials Physics and Mechanics, Vol. 4, 2001, pp. 134-137.

[31]   R. Ganesan, T. Gmanasekaran, G. Periaswami, R. S. Srinivasa, et al., “A Novel Approach for Synthesis of a Nanocrystalline Yttria Stabilized Zirconia Powder via Polymeric Precursor Routes,” Transactions—Indian Ceramic Society, Vol. 64, 2005, p. 149.

[32]   P. Ravindranath and K. C. Patil, “Preparation, Characterization and Thermal Analysis of Metal Hydrazinocarboxylate Derivatives,” Proceedings of the Indian Academy of Sciences (Chemical Sciences), Vol. 95, No. 4, 1985, pp. 345-356.

[33]   K. C. Patil, “Metal-Hydrazine Complexes as Precursors to Oxide Materials,” Proceedings of the Indian Academy of Sciences (Chemical Sciences), Vol. 96, No. 6, 1986, pp. 459-464.

[34]   R. C. Garvie and P. S. Nicholson, “Phase Analysis in Zirconia Systems,” Journal of the American Ceramic Society, Vol. 55, No. 6, 1972, pp. 303-305.

[35]   R. C. Garvie, “Stabilization of the Tetragonal Structure in Zirconia Nanocrystals,” Journal of Physical Chemistry, Vol. 82, No. 2, 1978, pp. 218-224.

[36]   R. Purohit and P. Venugopalan, “Polymorphysm: An Review,” Resonance, September 2009, pp. 882-893.

[37]   J. M. Rickmand and R. LeSar, “Free-Energy Calculations in Materials Research,” Annual Review of Materials Research, Vol. 32, 2002, pp. 195-217.

[38]   C. K. Kwok and C. R. Aita, “Near Band Gap Optical Behavior of Sputter Deposited α and α+β-ZrO2 Films,” Journal of Applied Physics, Vol. 66, No. 6, 1989, p. 2756.

[39]   R. H. French, S. J. Glass and F. S. Chachi, “Experimental and Theoretical Determination of the Electronic Structure and Optical Properties of Three Phases of ZrO2,” Physical Review B, Vol. 49, No. 8, 1994, pp. 5133-5142.

[40]   N. Salah, S. S. Habib, S. H. Khan, et al., “Thermoluminescence and Photoluminescence of ZrO2 Nanoparticles,” Radiation Physics and Chemistry, Vol. 80, No. 9, 2011, pp. 923-928.

[41]   J. D. McCullough and R. N. Trueblood, “The Crystal Structure of Baddeleyite (Monoclinic ZrO2),” Acta Crystallographica, Vol. 12, 1959, pp. 507-511.

[42]   M. N. Tahir, L. Gorgishvili, J. X. Li, et al., “Facile Synthesis and Characterization of Nanocrystalline Cubic ZrO2,” Solid State Sciences, Vol. 9, 2007, pp. 1105-1109.