AMI  Vol.3 No.4 , October 2013
Gold as a Potential Contrast Agent for Dual-Energy CT

Purpose: The K-edge of gold (81 keV) is located within the energy range of diagnostic CT. This might be advantageous for material differentiation in dual-energy CT (DECT). The aim of this in vitro study was to compare the differentiation between iodine or gold and body tissues using DECT at different kV spectra. Methods and Materials: A water filled tank phantom containing specimens with iodine (iopamidol), gold (sodium aurothiomalate), compact bone (compact porcine bone) and porcine muscle was scanned using a dual source CT (Definition, Siemens Healthcare). Consecutive scans were performed at 80 kVp, 100 kVp, 120 kVp and 140 kVp with constant mAs settings. The mean attenuation values of the specimens were measured, and differences in calculated dual-energy ratios (DEratio) between body tissues and iodine or gold were determined for different DE spectra. Results: The attenuation of gold increased compared to 80 kVp at higher kVp-settings, while the attenuation of all other specimens decreased. The calculated DEratios at 80/100 kVp, 80/120 kVp and 80/140 kVp were 1.31, 1.62 and 1.91 for iodine, 0.89, 0.88 and 0.92 for gold, 1.20, 1.39 and 1.45 for compact bone, 1.01, 1.03 and 1.08 for muscle. The differences between the DEratios 80/100 kVp, 80/120 kVp and 80/140 kVp were 0.11, 0.23 and 0.46 for iodine and bone, 0.31, 0.51 and 0.53 for gold and bone, 0.29, 0.59 and 0.83 for iodine and muscle, 0.12, 0.15 and 0.16 for gold and muscle. Conclusion: DEratio of gold remains relatively stable along the energy spectrum of diagnostic CT and allows a reliable material differentiation between gold and bone already at contiguous low tube voltage settings (80 kV and 100 kV). Thus, gold might have a potential as a contrast agent for DECT.

Cite this paper
R. Krissak, M. Elgert, B. Kusch and R. Hünerbein, "Gold as a Potential Contrast Agent for Dual-Energy CT," Advances in Molecular Imaging, Vol. 3 No. 4, 2013, pp. 37-42. doi: 10.4236/ami.2013.34006.
[1]   D. E. Avrin, A. Macovski and L. E. Zatz, “Clinical Application of Compton and Photo-Electric Reconstruction in Computed Tomography: Preliminary Results,” Investigative Radiology, Vol. 13, No. 3, 1978, pp. 217-222.

[2]   T. R. Johnson, B. Krauss, M. Sedlmair, M. Grasruck, H. Bruder, D. Morhard, C. Fink, S. Weckbach, M. Lenhard, B. Schmidt, T. Flohr, M. F. Reiser and C. R. Becker, “Material Differentiation by Dual Energy CT: Initial Experience,” European Radiology, Vol. 17, No. 6, 2007, pp. 1510-1517.

[3]   R. A. Kruger, S. J. Riederer and C. A. Mistretta, “Relative Properties of Tomography, K-Edge Imaging, and K- Edge Tomography,” Medical Physics, Vol. 4, No. 3, 1977, pp. 244-249.

[4]   W. Huda, E. M. Scalzetti and G. Levin, “Technique Factors and Image Quality as Functions of Patient Weight at Abdominal CT,” Radiology, Vol. 217, No. 2, 2000, pp. 430-435.

[5]   Y. Nakayama, K. Awai, Y. Funama, M. Hatemura, M. Imuta, T. Nakaura, D. Ryu, S. Morishita, S. Sultana, N. Sato and Y. Yamashita, “Abdominal CT with Low Tube Voltage: Preliminary Observations about Radiation Dose, Contrast Enhancement, Image Quality, and Noise,” Radiology, Vol. 237, No. 3, 2005, pp. 945-951.

[6]   G. N. Hounsfield, “Computerized Transverse Axial Scanning (Tomography). 1. Description of System,” British Journal of Radiology, Vol. 46, No. 552, 1973, pp. 1016-1022.

[7]   S. J. Riederer and C. A. Mistretta, “Selective Iodine Imaging Using K-Edge Energies in Computerized X-Ray Tomography,” Medical Physics, Vol. 4, No. 6, 1977, pp. 474-481.

[8]   L. M. Zatz, “The Effect of the kVp Level on EMI Values. Selective Imaging of Various Materials with Different kVp Settings,” Radiology, Vol. 119, No. 3, 1976, pp. 683- 688.

[9]   P. R. Seidensticker and L. K. Hofmann, “Dual Source CT Imaging,” Springer Medizin Verlag, Heidelberg, 2008.

[10]   T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Suss, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Kuttner, S. Achenbach, C. Becker, A. Kopp and B. M. Ohnesorge, “First Performance Evaluation of a Dual-Source CT (DSCT) System,” European Radiology, Vol. 16, No. 2, 2006, pp. 256-268.

[11]   Y. H. Lee, K. K. Park, H. T. Song, S. Kim and J. S. Suh, “Metal Artefact Reduction in Gemstone Spectral Imaging Dual-Energy CT with and without Metal Artefact Reduction Software,” European Radiology, Vol. 22, No. 6, 2012, pp. 1331-1340.

[12]   J. P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Baumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne and R. Proksa, “Experimental Feasibility of Multi-Energy Photon-Counting K-Edge Imaging in Pre-Clinical Computed Tomography,” Physics in Medicine & Biology, Vol. 53, No. 15, 2008, pp. 4031-4047.

[13]   A. N. Primak, J. C. Ramirez Giraldo, X. Liu, L. Yu and C. H. McCollough, “Improved Dual-Energy Material Discrimination for Dual-Source CT by Means of Additional Spectral Filtration,” Medical Physics, Vol. 36, No. 4, 2009, pp. 1359-1369.

[14]   M. Karcaaltincaba and A. Aktas, “Dual-Energy CT Revisited with Multidetector CT: Review of Principles and Clinical Applications,” Diagnostic and Interventional Radiology, Vol. 17, No. 3, 2011, pp. 181-194.

[15]   J. D. Jessop, M. M. O’Sullivan, P. A. Lewis, L. A. Williams, J. P. Camilleri, M. J. Plant and E. C. Coles, “A Long-Term Five-Year Randomized Controlled Trial of Hydroxychloroquine, Sodium Aurothiomalate, Auranofin and Penicillamine in the Treatment of Patients with Rheumatoid Arthritis,” British Journal of Rheumatology, Vol. 37, No. 9, 1998, pp. 992-1002.

[16]   J. F. Hainfeld, D. N. Slatkin, T. M. Focella and H. M. Smilowitz, “Gold Nanoparticles: A New X-Ray Contrast Agent,” British Journal of Radiology, Vol. 79, No. 939, 2006, pp. 248-253.

[17]   D. T. Boll, N. A. Patil, E. K. Paulson, E. M. Merkle, W. N. Simmons, S. A. Pierre and G. M. Preminger, “Renal Stone Assessment with Dual-Energy Multidetector CT and Advanced Postprocessing Techniques: Improved Characterization of Renal Stone Composition—Pilot Study,” Radiology, Vol. 250, No. 3, 2009, pp. 813-820.

[18]   D. Morhard, C. Fink, A. Graser, M. F. Reiser, C. Becker and T. R. Johnson, “Cervical and Cranial Computed Tomographic Angiography with Automated Bone Removal: Dual Energy Computed Tomography versus Standard Computed Tomography,” Investigative Radiology, Vol. 44, No. 5, 2009, pp. 293-297.

[19]   L. J. Zhang, S. Y. Wu, C. S. Poon, Y. E. Zhao, X. Chai, C. S. Zhou and G. M. Lu, “Automatic Bone Removal Dual- Energy CT Angiography for the Evaluation of Intracra- nial Aneurysms,” Journal of Computer Assisted Tomography, Vol. 34, No. 6, 2010, pp. 816-824.

[20]   C. Brockmann, S. Jochum, M. Sadick, K. Huck, P. Zie- gler, C. Fink, S. O. Schoenberg and S. J. Diehl, “Dual- Energy CT Angiography in Peripheral Arterial Occlusive Disease,” CardioVascular and Interventional Radiology, Vol. 32, No. 4, 2009, pp. 630-637.

[21]   B. C. Meyer, T. Werncke, W. Hopfenmuller, H. J. Raatschen, K. J. Wolf and T. Albrecht, “Dual Energy CT of Peripheral Arteries: Effect of Automatic Bone and Plaque Removal on Image Quality and Grading of Stenoses,” European Journal of Radiology, Vol. 68, No. 3, 2008, pp. 414-422.

[22]   A. Graser, T. R. Johnson, H. Chandarana and M. Macari, “Dual Energy CT: Preliminary Observations and Potential Clinical Applications in the Abdomen,” European Journal of Radiology, Vol. 19, No. 1, 2008, pp. 13-23.

[23]   M. Toepker, T. Moritz, B. Krauss, M. Weber, G. Euller, T. Mang, F. Wolf, C. J. Herold and H. Ringl, “Virtual NonContrast in Second-Generation, Dual-Energy Computed Tomography: Reliability of Attenuation Values,” European Journal of Radiology, Vol. 81, No. 3, 2012, pp. e398-e405.

[24]   C. Thomas, B. Krauss, D. Ketelsen, I. Tsiflikas, A. Reimann, M. Werner, D. Schilling, J. Hennenlotter, C. D. Claussen, H. P. Schlemmer and M. Heuschmid, “Differentiation of Urinary Calculi with Dual Energy CT: Effect of Spectral Shaping by High Energy Tin Filtration,” Investigative Radiology, Vol. 45, No. 7, 2010, pp. 393-398.

[25]   M. Trani, A. Sorrentino, C. Busch and M. Landstrom, “Pro-Apoptotic Effect of Aurothiomalate in Prostate Cancer Cells,” Cell Cycle, Vol. 8, No. 2, 2009, pp. 306-313.

[26]   M. W. Galper, M. T. Saung, V. Fuster, E. Roessl, A. Thran, R. Proksa, Z. A. Fayad and D. P. Cormode, “Effect of Computed Tomography Scanning Parameters on Gold Nanoparticle and Iodine Contrast,” Investigative Radiology, Vol. 47, No. 8, 2012, pp. 475-481.

[27]   T. Nowak, M. Hupfer, R. Brauweiler, F. Eisa and W. A. Kalender, “Potential of High-Z Contrast Agents in Clinical Contrast-Enhanced Computed Tomography,” Medical Physics, Vol. 38, No. 12, 2011, pp. 6469-6482.

[28]   M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker and K. Olsen, “XCOM: Photon Cross Sections Database,” 1998.