IJG  Vol.4 No.5 B , September 2013
Extreme Events Assessment Methodology Coupling Debris Flow, Flooding and Tidal Levels in the Coastal Floodplain of the São Paulo North Coast (Brazil)
ABSTRACT

The North Coastal Region of the State of S?o Paulo, which comprises the Municipalities of Caraguatatuba, S?o Sebasti?o, Ilhabela and Ubatuba, is one of the most prone to flooding and debris flow deposition Brazilian areas, owing to hydrological extreme rainfall events usually coupled with extreme tidal levels. This risk is also high due to human lives and material assets, with increasing population rates and the establishment of large companies such as the Oil industry, with reduced defense/prevention measures and works.The catastrophic scenario of the city of Caraguatatuba, in March 1967, resulting from one of the most serious natural disasters in Brazil, fosters discussions about probabilities of heavy rainfall-caused events and rise in the sea level in coastal areas. Hence, this research is a consequence of this reality. The research is founded on an innovative methodology based on the analysis of past data of rainfall and tidal stations, complemented with debris flow registers in the region of the north coastal zone of the State of S?o Paulo (Brazil). The anaysis developed involved the meteorological, hydraulic, geotechnical and statistical knowledge areas.Practical results are intended to be used for urban planning, designs of macro-drainage, fluvial, maritime projects and debris flow retention structures. These practical applications will then associate the probability of occurrence of certain types of heavy rainfall-caused events such as flooding or debris flow coupled with a corresponding increase in tidal levels.


Cite this paper
R. Oliveira Sakai, D. Cartacho, E. Arasaki, P. Alfredini, A. Pezzoli, W. Sousa Júnior, M. Rosso and L. Magni, "Extreme Events Assessment Methodology Coupling Debris Flow, Flooding and Tidal Levels in the Coastal Floodplain of the São Paulo North Coast (Brazil)," International Journal of Geosciences, Vol. 4 No. 5, 2013, pp. 30-38. doi: 10.4236/ijg.2013.45B006.
References
[1]   N. Brigatti and J. Sant′Anna Neto, “Dinamica Climática e Variaçães do Nível do mar na Geração de Enchentes, Inundações e Ressacas no Litoral Norte Paulista,” Revista Formação-Especial, Vol. 2, No. 15, 2008, pp. 25-36.

[2]   D. A. Jones, “Joint probability Fluvial-Tidal Analyses: Structure Functions and Historical Emulation,” Institute of Hydrology—Wallingford & Ministry of Agriculture, Fisheries and Food and the Natural Environment, Project FD04017, 1998.

[3]   K. L. McInnes, I. Macadam, G. D. Hubbert, D. J. Abbs and J. Bathols, “The Effect of the Climate Change on Storm Surges,” In: Climate Change in Eastern Victoria, Stage, 2nd Edition, CSIRO, 2005.

[4]   L. W. White, “Tidal and Rainfall Flooding Evaluation for Cape Henry, Cape Story,” Parsons & Brinckerhoff, Vrigina, 2010.

[5]   J. J. Lian, K. Xu and C. Ma, “Joitn Impact of Rainfall and Tidal Level on Flood Risk in a Coastal City with a Complex River Network: A Case Study of Fuzhou City, China,” Hydrology and Earth System Sciences, Vol. 17, 2013, pp. 679-689. http://dx.doi.org/10.5194/hess-17-679-2013

[6]   Hidroconsult, “Análise Probabilística de Ocorrência Conjugada de Eventos Máximos Chuva-Maré,” Estudo Realizado para SOMA Secretaria de Obras e do Meio Ambiente, DAEE, Departamento Estadual de águas e Energia, São Paulo, 1979.

[7]   ANA-Agência Nacional de Aguas, 2005. http://hidroweb.ana.gov.br/

[8]   O. Cruz, “A Serra do Mar e o Litoral na área de Caraguatatuba-SP—Contribuição à Geomorfologia Litoranea Tropical. São Paulo,” Faculdade de Filosofia, Letras e Ciências Humanas da Universidade de São Paulo (FFL-CH-USP). Department de Geografia (FLG), 1974.

[9]   S. Yue, T. Ouarda, B. Bobée, P. Legendre and P. Bruneau, “The Gumble Mixed Model for Flood Frequency Analysis,” Journal of Hydrology, Vol. 226, 1999, pp. 88-100. http://dx.doi.org/10.1016/S0022-1694(99)00168-7

[10]   S. Grimaldi, A. Petroselli, E. Arcangeletti and F. Nardi, “Flood Mapping in Ungauged Basins Using Fully Continuous Hydrologic-Hydraulic Modeling,” Journal of Hydrology, Vol. 487, 2013, pp. 39-47. http://dx.doi.org/10.1016/j.jhydrol.2013.02.023

[11]   J. S. O’Brien, “FLO-2D: 2 Dimensional Flood Routing Model Software; Flood Hazard Mitigation and Planning,” Federal Emergency Management Agency, Nutrioso, 1989.

[12]   J. B. Conti, “Circulação Secundária e Efeito Orográfico na Gênese das Chuvas na Região Lesnordeste Paulista,” IGEOG/USP, São Paulo, 1975.

[13]   R. Tavares, J. L. Sant′Anna Neto and J. Santoro, “Chuvas e Escorregamentos no Litoral Norte Paulista Entre 1988 e 2001,” Anais do Encontro de Geógrafos Brasileiros, Joao Pessoa, 2002.

[14]   C. Souza, “Flooding in the São Sebastião Region, Northern Coast of São Paulo State, Brazil,” Anais da Academia Brasileira de Ciências, São Paulo, 1998, pp. 353-366.

[15]   V. J. Fúlfaro, et al., “Escorregamentos de Caraguatatuba: Expressão Atual e Registro na Coluna Sedimentar da Planície Costeira Adjacente,” Congresso Brasileiro de Geologia de Engenharia, Vol. 2, 1976, pp. 341-350.

[16]   ITA, “Mudanças Climáticas Globais e Impactos na Zona Costeira: Modelos, Indicadores, Obras civis e Fatores de Mitigação/Adaptação,” São José dos Campos, 2009.

 
 
Top